Author: John William Gadzuk
Publisher:
ISBN:
Category : Electron gas
Languages : en
Pages : 100
Book Description
The case of an inhomogeneous electron gas within which the density variation is significant over a spatial range of the order of a Fermi wave-length is considered in this report. It is seen that for most systems of physical interest, this sort of non-uniformity is a result of diffraction effects. This is a fundamentally different phenomenon than can reasonably be treated by the density gradient method of Kohn for slowly varying inhomogeneous electron gases. Several sample cases are treated. The first considerations are directed towards the problem of a weak periodic potential in an interacting electron gas. The momentum-dependent self-energy is calculated for an electron propagating in the many-body medium of an electron gas plus a periodic lattice pseudo-potential. This is the equivalent of a quasi-particle energy spectrum and thus an orthogonalized plane wave energy band. It does not appear that the lattice drastically changes qualitative aspects of plane wave many-body theory. A dielectric formulation for a general inhomogeneous electron gas is presented. By introducing a new image technique, the dielectric function within the random phase approximation, which is valid in the surface region of an electron gas, is obtained. A Green's function formalism is developed for treating the static dielectric screening of a point impurity in an electron gas. The surface dielectric function is used with the impurity screening formalism to treat the problem of impurity screening in the surface region. This is an idealized model of ionic adsorption on metal surface. Screening charge densities resulting from volume polarization effects are calculated. From these results, it is seen why unjustifiable application of classical image forces in previous adsorption theories has fortunately produced reasonable results. A new method for obtaining the appropriate plasmon contribution to the electron self-energy in the surface region is developed. With these results, the electron gas surface potentials calculated by Loucks and Cutler are then improved.
Many-body Theory of a Rapidly Varying Inhomogeneous Electron Gas
Author: John William Gadzuk
Publisher:
ISBN:
Category : Electron gas
Languages : en
Pages : 100
Book Description
The case of an inhomogeneous electron gas within which the density variation is significant over a spatial range of the order of a Fermi wave-length is considered in this report. It is seen that for most systems of physical interest, this sort of non-uniformity is a result of diffraction effects. This is a fundamentally different phenomenon than can reasonably be treated by the density gradient method of Kohn for slowly varying inhomogeneous electron gases. Several sample cases are treated. The first considerations are directed towards the problem of a weak periodic potential in an interacting electron gas. The momentum-dependent self-energy is calculated for an electron propagating in the many-body medium of an electron gas plus a periodic lattice pseudo-potential. This is the equivalent of a quasi-particle energy spectrum and thus an orthogonalized plane wave energy band. It does not appear that the lattice drastically changes qualitative aspects of plane wave many-body theory. A dielectric formulation for a general inhomogeneous electron gas is presented. By introducing a new image technique, the dielectric function within the random phase approximation, which is valid in the surface region of an electron gas, is obtained. A Green's function formalism is developed for treating the static dielectric screening of a point impurity in an electron gas. The surface dielectric function is used with the impurity screening formalism to treat the problem of impurity screening in the surface region. This is an idealized model of ionic adsorption on metal surface. Screening charge densities resulting from volume polarization effects are calculated. From these results, it is seen why unjustifiable application of classical image forces in previous adsorption theories has fortunately produced reasonable results. A new method for obtaining the appropriate plasmon contribution to the electron self-energy in the surface region is developed. With these results, the electron gas surface potentials calculated by Loucks and Cutler are then improved.
Publisher:
ISBN:
Category : Electron gas
Languages : en
Pages : 100
Book Description
The case of an inhomogeneous electron gas within which the density variation is significant over a spatial range of the order of a Fermi wave-length is considered in this report. It is seen that for most systems of physical interest, this sort of non-uniformity is a result of diffraction effects. This is a fundamentally different phenomenon than can reasonably be treated by the density gradient method of Kohn for slowly varying inhomogeneous electron gases. Several sample cases are treated. The first considerations are directed towards the problem of a weak periodic potential in an interacting electron gas. The momentum-dependent self-energy is calculated for an electron propagating in the many-body medium of an electron gas plus a periodic lattice pseudo-potential. This is the equivalent of a quasi-particle energy spectrum and thus an orthogonalized plane wave energy band. It does not appear that the lattice drastically changes qualitative aspects of plane wave many-body theory. A dielectric formulation for a general inhomogeneous electron gas is presented. By introducing a new image technique, the dielectric function within the random phase approximation, which is valid in the surface region of an electron gas, is obtained. A Green's function formalism is developed for treating the static dielectric screening of a point impurity in an electron gas. The surface dielectric function is used with the impurity screening formalism to treat the problem of impurity screening in the surface region. This is an idealized model of ionic adsorption on metal surface. Screening charge densities resulting from volume polarization effects are calculated. From these results, it is seen why unjustifiable application of classical image forces in previous adsorption theories has fortunately produced reasonable results. A new method for obtaining the appropriate plasmon contribution to the electron self-energy in the surface region is developed. With these results, the electron gas surface potentials calculated by Loucks and Cutler are then improved.
NASA Technical Report
Author:
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 946
Book Description
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 946
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 652
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 652
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Monthly Catalog of United States Government Publications
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages :
Book Description
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages :
Book Description
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
NASA Scientific and Technical Reports
Author: United States. National Aeronautics and Space Administration Scientific and Technical Information Division
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 478
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 478
Book Description
The Journal of Physics and Chemistry of Solids
Author:
Publisher:
ISBN:
Category : Solids
Languages : en
Pages : 722
Book Description
Publisher:
ISBN:
Category : Solids
Languages : en
Pages : 722
Book Description
A Selected Listing of NASA Scientific and Technical Reports
Author: United States. National Aeronautics and Space Administration. Scientific and Technical Information Division
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 470
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 470
Book Description
Comprehensive Dissertation Index, 1861-1972: Physics, M-Z
Author: Xerox University Microfilms
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 944
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 944
Book Description
Annual Report
Author: Massachusetts Institute of Technology
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 416
Book Description
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 416
Book Description
Research in Materials
Author: Massachusetts Institute of Technology
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 838
Book Description
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 838
Book Description