Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
The Book of Alternative Data
Author: Alexander Denev
Publisher: John Wiley & Sons
ISBN: 1119601797
Category : Business & Economics
Languages : en
Pages : 416
Book Description
The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
Publisher: John Wiley & Sons
ISBN: 1119601797
Category : Business & Economics
Languages : en
Pages : 416
Book Description
The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
Data Science for Economics and Finance
Author: Sergio Consoli
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Publisher: Springer Nature
ISBN: 3030668916
Category : Application software
Languages : en
Pages : 357
Book Description
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Macroeconomic Forecasting Using Alternative Data
Author: Apurv Jain
Publisher: Academic Press
ISBN: 9780128191217
Category : Business & Economics
Languages : en
Pages : 250
Book Description
Macroeconomic Forecasting Using Alternative Data applies computer science to the demands of macroeconomic forecasting. It is the first book to combine machine learning methods with macroeconomics. By using artificial intelligence and machine learning techniques, it unlocks the increased forecasting accuracy offered by alternative data sources. Through its interdisciplinary approach, readers learn how to use big datasets efficiently and effectively. Combines big data/machine learning with macroeconomic forecasting Explains how alternative data improve forecasting accuracy when controlled for traditional data sources Provides new innovative methods for handling large databases and improving forecasting accuracy
Publisher: Academic Press
ISBN: 9780128191217
Category : Business & Economics
Languages : en
Pages : 250
Book Description
Macroeconomic Forecasting Using Alternative Data applies computer science to the demands of macroeconomic forecasting. It is the first book to combine machine learning methods with macroeconomics. By using artificial intelligence and machine learning techniques, it unlocks the increased forecasting accuracy offered by alternative data sources. Through its interdisciplinary approach, readers learn how to use big datasets efficiently and effectively. Combines big data/machine learning with macroeconomic forecasting Explains how alternative data improve forecasting accuracy when controlled for traditional data sources Provides new innovative methods for handling large databases and improving forecasting accuracy
Handbook of US Consumer Economics
Author: Andrew Haughwout
Publisher: Academic Press
ISBN: 0128135255
Category : Business & Economics
Languages : en
Pages : 458
Book Description
Handbook of U.S. Consumer Economics presents a deep understanding on key, current topics and a primer on the landscape of contemporary research on the U.S. consumer. This volume reveals new insights into household decision-making on consumption and saving, borrowing and investing, portfolio allocation, demand of professional advice, and retirement choices. Nearly 70% of U.S. gross domestic product is devoted to consumption, making an understanding of the consumer a first order issue in macroeconomics. After all, understanding how households played an important role in the boom and bust cycle that led to the financial crisis and recent great recession is a key metric. - Introduces household finance by examining consumption and borrowing choices - Tackles macro-problems by observing new, original micro-data - Looks into the future of consumer spending by using data, not questionnaires
Publisher: Academic Press
ISBN: 0128135255
Category : Business & Economics
Languages : en
Pages : 458
Book Description
Handbook of U.S. Consumer Economics presents a deep understanding on key, current topics and a primer on the landscape of contemporary research on the U.S. consumer. This volume reveals new insights into household decision-making on consumption and saving, borrowing and investing, portfolio allocation, demand of professional advice, and retirement choices. Nearly 70% of U.S. gross domestic product is devoted to consumption, making an understanding of the consumer a first order issue in macroeconomics. After all, understanding how households played an important role in the boom and bust cycle that led to the financial crisis and recent great recession is a key metric. - Introduces household finance by examining consumption and borrowing choices - Tackles macro-problems by observing new, original micro-data - Looks into the future of consumer spending by using data, not questionnaires
Economic Forecasting
Author: Graham Elliott
Publisher: Princeton University Press
ISBN: 1400880890
Category : Business & Economics
Languages : en
Pages : 567
Book Description
A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike
Publisher: Princeton University Press
ISBN: 1400880890
Category : Business & Economics
Languages : en
Pages : 567
Book Description
A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike
Alternative Economic Indicators
Author: C. James Hueng
Publisher: W.E. Upjohn Institute
ISBN: 0880996765
Category : Business & Economics
Languages : en
Pages : 133
Book Description
Policymakers and business practitioners are eager to gain access to reliable information on the state of the economy for timely decision making. More so now than ever. Traditional economic indicators have been criticized for delayed reporting, out-of-date methodology, and neglecting some aspects of the economy. Recent advances in economic theory, econometrics, and information technology have fueled research in building broader, more accurate, and higher-frequency economic indicators. This volume contains contributions from a group of prominent economists who address alternative economic indicators, including indicators in the financial market, indicators for business cycles, and indicators of economic uncertainty.
Publisher: W.E. Upjohn Institute
ISBN: 0880996765
Category : Business & Economics
Languages : en
Pages : 133
Book Description
Policymakers and business practitioners are eager to gain access to reliable information on the state of the economy for timely decision making. More so now than ever. Traditional economic indicators have been criticized for delayed reporting, out-of-date methodology, and neglecting some aspects of the economy. Recent advances in economic theory, econometrics, and information technology have fueled research in building broader, more accurate, and higher-frequency economic indicators. This volume contains contributions from a group of prominent economists who address alternative economic indicators, including indicators in the financial market, indicators for business cycles, and indicators of economic uncertainty.
The Oxford Handbook of Economic Forecasting
Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Mining Data for Financial Applications
Author: Valerio Bitetta
Publisher: Springer Nature
ISBN: 3030669815
Category : Computers
Languages : en
Pages : 161
Book Description
This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030669815
Category : Computers
Languages : en
Pages : 161
Book Description
This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Business Cycles, Indicators, and Forecasting
Author: James H. Stock
Publisher: University of Chicago Press
ISBN: 0226774740
Category : Business & Economics
Languages : en
Pages : 350
Book Description
The inability of forecasters to predict accurately the 1990-1991 recession emphasizes the need for better ways for charting the course of the economy. In this volume, leading economists examine forecasting techniques developed over the past ten years, compare their performance to traditional econometric models, and discuss new methods for forecasting and time series analysis.
Publisher: University of Chicago Press
ISBN: 0226774740
Category : Business & Economics
Languages : en
Pages : 350
Book Description
The inability of forecasters to predict accurately the 1990-1991 recession emphasizes the need for better ways for charting the course of the economy. In this volume, leading economists examine forecasting techniques developed over the past ten years, compare their performance to traditional econometric models, and discuss new methods for forecasting and time series analysis.