Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630572934
Category : Computers
Languages : en
Pages : 291
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2019 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.
Machining Simulation Using SOLIDWORKS CAM 2019
Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630572934
Category : Computers
Languages : en
Pages : 291
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2019 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.
Publisher: SDC Publications
ISBN: 1630572934
Category : Computers
Languages : en
Pages : 291
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2019 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.
Machining Simulation Using SOLIDWORKS CAM 2021
Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630574147
Category : Computers
Languages : en
Pages : 293
Book Description
• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2021 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students. Table of Contents 1. Introduction to SOLIDWORKS CAM 2. NC Part Programming 3. SOLIDWORKS CAM NC Editor 4. A Quick Run-Through 5. Machining 2.5 Axis Features 6. Machining a Freeform Surface and Limitations 7. Multipart Machining 8. Multiplane Machining 9. Tolerance-Based Machining 10. Turning a Stepped Bar 11. Turning a Stub Shaft 12. Machining a Robotic Forearm Member 13. Turning a Scaled Baseball Bat 14. Third-Party CAM Modules Appendix A: Machinable Features Appendix B: Machining Operations Appendix C: Alphabetical Address Codes Appendix D: Preparatory Functions Appendix E: Machine Functions
Publisher: SDC Publications
ISBN: 1630574147
Category : Computers
Languages : en
Pages : 293
Book Description
• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2021 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students. Table of Contents 1. Introduction to SOLIDWORKS CAM 2. NC Part Programming 3. SOLIDWORKS CAM NC Editor 4. A Quick Run-Through 5. Machining 2.5 Axis Features 6. Machining a Freeform Surface and Limitations 7. Multipart Machining 8. Multiplane Machining 9. Tolerance-Based Machining 10. Turning a Stepped Bar 11. Turning a Stub Shaft 12. Machining a Robotic Forearm Member 13. Turning a Scaled Baseball Bat 14. Third-Party CAM Modules Appendix A: Machinable Features Appendix B: Machining Operations Appendix C: Alphabetical Address Codes Appendix D: Preparatory Functions Appendix E: Machine Functions
Machining Simulation Using SOLIDWORKS CAM 2020
Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630573337
Category : Computers
Languages : en
Pages : 291
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2020 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.
Publisher: SDC Publications
ISBN: 1630573337
Category : Computers
Languages : en
Pages : 291
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2020 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.
Machining Simulation Using SOLIDWORKS CAM 2018
Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630572470
Category : Computers
Languages : en
Pages : 288
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2018 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.
Publisher: SDC Publications
ISBN: 1630572470
Category : Computers
Languages : en
Pages : 288
Book Description
This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2018 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feedrate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful. Who is this book for? This book should serve well for self-learners. A self-learner should have basic physics and mathematics background, preferably a bachelor or associate degree in science or engineering. We assume that you are familiar with basic manufacturing processes, especially milling and turning. And certainly, we expect that you are familiar with SOLIDWORKS part and assembly modes. A self-learner should be able to complete the fourteen lessons of this book in about fifty hours. This book also serves well for class instruction. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover five to six weeks of class instruction, depending on the course arrangement and the technical background of the students.
Machining Simulation Using SOLIDWORKS CAM 2023
Author: Kuang-Hua Chang
Publisher: SDC Publications
ISBN: 1630575704
Category : Computers
Languages : en
Pages : 291
Book Description
• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2023 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.
Publisher: SDC Publications
ISBN: 1630575704
Category : Computers
Languages : en
Pages : 291
Book Description
• Teaches you how to prevent problems, reduce manufacturing costs, shorten production time, and improve estimating • Covers the core concepts and most frequently used commands in SOLIDWORKS CAM • Designed for users new to SOLIDWORKS CAM with basic knowledge of manufacturing processes • Incorporates cutter location data verification by reviewing the generated G-codes • Includes a chapter on third-party CAM Modules This book will teach you all the important concepts and steps used to conduct machining simulations using SOLIDWORKS CAM. SOLIDWORKS CAM is a parametric, feature-based machining simulation software offered as an add-in to SOLIDWORKS. It integrates design and manufacturing in one application, connecting design and manufacturing teams through a common software tool that facilitates product design using 3D solid models. By carrying out machining simulation, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features of part manufacturing can be detected and addressed while the product design is still being finalized. In addition, machining-related problems can be detected and eliminated before mounting a stock on a CNC machine, and manufacturing cost can be estimated using the machining time estimated in the machining simulation. This book is intentionally kept simple. It’s written to help you become familiar with the practical applications of conducting machining simulations in SOLIDWORKS CAM. This book provides you with the basic concepts and steps needed to use the software, as well as a discussion of the G-codes generated. After completing this book, you should have a clear understanding of how to use SOLIDWORKS CAM for machining simulations and should be able to apply this knowledge to carry out machining assignments on your own product designs. In order to provide you with a more comprehensive understanding of machining simulations, the book discusses NC (numerical control) part programming and verification, as well as introduces applications that involve bringing the G-code post processed by SOLIDWORKS CAM to a HAAS CNC mill and lathe to physically cut parts. This book points out important, practical factors when transitioning from virtual to physical machining. Since the machining capabilities offered in the 2023 version of SOLIDWORKS CAM are somewhat limited, this book introduces third-party CAM modules that are seamlessly integrated into SOLIDWORKS, including CAMWorks, HSMWorks, and Mastercam for SOLIDWORKS. This book covers basic concepts, frequently used commands and options required for you to advance from a novice to an intermediate level SOLIDWORKS CAM user. Basic concepts and commands introduced include extracting machinable features (such as 2.5 axis features), selecting a machine and cutting tools, defining machining parameters (such as feed rate, spindle speed, depth of cut, and so on), generating and simulating toolpaths, and post processing CL data to output G-code for support of physical machining. The concepts and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL data verification by reviewing the G-code generated from the toolpaths. This helps you understand how the G-code is generated by using the respective post processors, which is an important step and an excellent way to confirm that the toolpaths and G-code generated are accurate and useful.
SolidWorks Simulation 2020 Black Book (Colored)
Author: Gaurav Verma
Publisher: Cadcamcae Works
ISBN: 9781988722771
Category : Computers
Languages : en
Pages : 428
Book Description
The SolidWorks Simulation 2020 Black Book,7th edition is written for professionals and students of Finite Element Analysis field. The book starts with basics of FEA, goes through all the simulation tools and ends up with practical examples of analysis with explanation of Solver selection, iteration methods and integration techniques.
Publisher: Cadcamcae Works
ISBN: 9781988722771
Category : Computers
Languages : en
Pages : 428
Book Description
The SolidWorks Simulation 2020 Black Book,7th edition is written for professionals and students of Finite Element Analysis field. The book starts with basics of FEA, goes through all the simulation tools and ends up with practical examples of analysis with explanation of Solver selection, iteration methods and integration techniques.
Advances in CAD/CAM/CAE Technologies
Author: Panagiotis Kyratsis
Publisher: MDPI
ISBN: 3039287400
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations.
Publisher: MDPI
ISBN: 3039287400
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations.
Automating SOLIDWORKS 2019 Using Macros
Author: Mike Spens
Publisher: SDC Publications
ISBN: 1630572136
Category : Computers
Languages : en
Pages : 380
Book Description
Engineers working with SOLIDWORKS are often faced with tedious, repetitive work that can consume a lot of time, but it doesn’t have to be this way. One of the most exciting aspects of SOLIDWORKS is its robust programming interface or API. The SOLIDWORKS API allows you to write code that can perform almost any series of actions for you. SOLIDWORKS was built from the ground up to automate, and in this book, you will learn how to take advantage of these powerful tools to speed up your work. Automating SOLIDWORKS 2019 Using Macros is designed as a tutorial to help beginner to intermediate programmers develop macros for SOLIDWORKS. Experience with programming isn’t required. The book starts with a new chapter on the fundamentals of Visual Basic.NET and the SOLIDWORKS API to make the learning process easier for beginners. The rest of the book introduces you to developing macros using the SOLIDWORKS API. The book concludes with a chapter dedicated to some of the author’s favorite source code for you to use as the basis for typical automation procedures. The focus of this book is primarily on the Visual Studio Tools for Applications (VSTA) macro interface. It covers many of the major API functions through practical use cases. It will teach you the fundamentals of Visual Basic.NET as well as SOLIDWORKS, SOLIDWORKS PDM Professional, SOLIDWORKS Document Manager and Excel API functions. Author Mike Spens has been professionally developing macros for SOLIDWORKS for more than a decade. He has helped numerous companies develop their own programs and streamline their workflows. If you want to learn how to develop your own macros for SOLIDWORKS, following best practices and using well written code, then this is the perfect book for you.
Publisher: SDC Publications
ISBN: 1630572136
Category : Computers
Languages : en
Pages : 380
Book Description
Engineers working with SOLIDWORKS are often faced with tedious, repetitive work that can consume a lot of time, but it doesn’t have to be this way. One of the most exciting aspects of SOLIDWORKS is its robust programming interface or API. The SOLIDWORKS API allows you to write code that can perform almost any series of actions for you. SOLIDWORKS was built from the ground up to automate, and in this book, you will learn how to take advantage of these powerful tools to speed up your work. Automating SOLIDWORKS 2019 Using Macros is designed as a tutorial to help beginner to intermediate programmers develop macros for SOLIDWORKS. Experience with programming isn’t required. The book starts with a new chapter on the fundamentals of Visual Basic.NET and the SOLIDWORKS API to make the learning process easier for beginners. The rest of the book introduces you to developing macros using the SOLIDWORKS API. The book concludes with a chapter dedicated to some of the author’s favorite source code for you to use as the basis for typical automation procedures. The focus of this book is primarily on the Visual Studio Tools for Applications (VSTA) macro interface. It covers many of the major API functions through practical use cases. It will teach you the fundamentals of Visual Basic.NET as well as SOLIDWORKS, SOLIDWORKS PDM Professional, SOLIDWORKS Document Manager and Excel API functions. Author Mike Spens has been professionally developing macros for SOLIDWORKS for more than a decade. He has helped numerous companies develop their own programs and streamline their workflows. If you want to learn how to develop your own macros for SOLIDWORKS, following best practices and using well written code, then this is the perfect book for you.
SOLIDWORKS 2019 Tutorial
Author: David Planchard
Publisher: SDC Publications
ISBN: 1630572381
Category : Computers
Languages : en
Pages : 642
Book Description
SOLIDWORKS 2019 Tutorial is written to assist students, designers, engineers and professionals who are new to SOLIDWORKS. The text provides a step-by-step, project based learning approach. It also contains information and examples on the five categories in the CSWA exam. The book is divided into four sections. Chapters 1 - 5 explore the SOLIDWORKS User Interface and CommandManager, Document and System properties, simple and complex parts and assemblies, proper design intent, design tables, configurations, multi-sheet, multi-view drawings, BOMs, and Revision tables using basic and advanced features. In chapter 6 you will create the final robot assembly. The physical components and corresponding Science, Technology, Engineering and Math (STEM) curriculum are available from Gears Educational Systems. All assemblies and components for the final robot assembly are provided. Chapters 7 - 10 prepare you for the Certified Associate - Mechanical Design (CSWA) exam. The certification indicates a foundation in and apprentice knowledge of 3D CAD and engineering practices and principles. Chapter 11 covers the benefits of additive manufacturing (3D printing), how it differs from subtractive manufacturing, and its features. You will also learn the terms and technology used in low cost 3D printers. Follow the step-by-step instructions and develop multiple assemblies that combine over 100 extruded machined parts and components. Formulate the skills to create, modify and edit sketches and solid features. Learn the techniques to reuse features, parts and assemblies through symmetry, patterns, copied components, apply proper design intent, design tables and configurations. Learn by doing, not just by reading. Desired outcomes and usage competencies are listed for each chapter. Know your objective up front. Follow the steps in each chapter to achieve your design goals. Work between multiple documents, features, commands, custom properties and document properties that represent how engineers and designers utilize SOLIDWORKS in industry.
Publisher: SDC Publications
ISBN: 1630572381
Category : Computers
Languages : en
Pages : 642
Book Description
SOLIDWORKS 2019 Tutorial is written to assist students, designers, engineers and professionals who are new to SOLIDWORKS. The text provides a step-by-step, project based learning approach. It also contains information and examples on the five categories in the CSWA exam. The book is divided into four sections. Chapters 1 - 5 explore the SOLIDWORKS User Interface and CommandManager, Document and System properties, simple and complex parts and assemblies, proper design intent, design tables, configurations, multi-sheet, multi-view drawings, BOMs, and Revision tables using basic and advanced features. In chapter 6 you will create the final robot assembly. The physical components and corresponding Science, Technology, Engineering and Math (STEM) curriculum are available from Gears Educational Systems. All assemblies and components for the final robot assembly are provided. Chapters 7 - 10 prepare you for the Certified Associate - Mechanical Design (CSWA) exam. The certification indicates a foundation in and apprentice knowledge of 3D CAD and engineering practices and principles. Chapter 11 covers the benefits of additive manufacturing (3D printing), how it differs from subtractive manufacturing, and its features. You will also learn the terms and technology used in low cost 3D printers. Follow the step-by-step instructions and develop multiple assemblies that combine over 100 extruded machined parts and components. Formulate the skills to create, modify and edit sketches and solid features. Learn the techniques to reuse features, parts and assemblies through symmetry, patterns, copied components, apply proper design intent, design tables and configurations. Learn by doing, not just by reading. Desired outcomes and usage competencies are listed for each chapter. Know your objective up front. Follow the steps in each chapter to achieve your design goals. Work between multiple documents, features, commands, custom properties and document properties that represent how engineers and designers utilize SOLIDWORKS in industry.
Recent Trends in Engineering Design
Author: Anand Parey
Publisher: Springer Nature
ISBN: 9811610797
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
This book presents select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. The topics covered include computer aided design (CAD), computer assisted manufacturing (CAM), computer integrated manufacturing (CIM), computer aided engineering (CAE) and product design, dynamics of control structures and systems, solid mechanics: differential and dynamical systems, modelling and simulation. The book also discusses various modern age design tools including finite element analysis, modelling, analysis and simulation of manufacturing processes, process design, automation, mechatronics, robotics and assembly, etc. The book will be useful for beginners, researchers, and professionals interested in the field of sustainable design practices.
Publisher: Springer Nature
ISBN: 9811610797
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
This book presents select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. The topics covered include computer aided design (CAD), computer assisted manufacturing (CAM), computer integrated manufacturing (CIM), computer aided engineering (CAE) and product design, dynamics of control structures and systems, solid mechanics: differential and dynamical systems, modelling and simulation. The book also discusses various modern age design tools including finite element analysis, modelling, analysis and simulation of manufacturing processes, process design, automation, mechatronics, robotics and assembly, etc. The book will be useful for beginners, researchers, and professionals interested in the field of sustainable design practices.