Stochastic Optimization for Large-scale Machine Learning

Stochastic Optimization for Large-scale Machine Learning PDF Author: Vinod Kumar Chauhan
Publisher: CRC Press
ISBN: 1000505618
Category : Computers
Languages : en
Pages : 189

Get Book Here

Book Description
Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Stochastic Optimization for Large-scale Machine Learning

Stochastic Optimization for Large-scale Machine Learning PDF Author: Vinod Kumar Chauhan
Publisher: CRC Press
ISBN: 1000505618
Category : Computers
Languages : en
Pages : 189

Get Book Here

Book Description
Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 303059338X
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics PDF Author: Thomas, J. Joshua
Publisher: IGI Global
ISBN: 1799811948
Category : Computers
Languages : en
Pages : 355

Get Book Here

Book Description
Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges PDF Author: Ali Emrouznejad
Publisher: Springer
ISBN: 3319302655
Category : Technology & Engineering
Languages : en
Pages : 492

Get Book Here

Book Description
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.

Machine Learning, Optimization, and Big Data

Machine Learning, Optimization, and Big Data PDF Author: Panos M. Pardalos
Publisher: Springer
ISBN: 3319514695
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
This book constitutes revised selected papers from the Second International Workshop on Machine Learning, Optimization, and Big Data, MOD 2016, held in Volterra, Italy, in August 2016. The 40 papers presented in this volume were carefully reviewed and selected from 97 submissions. These proceedings contain papers in the fields of Machine Learning, Computational Optimization and DataScience presenting a substantial array of ideas, technologies, algorithms, methods and applications.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics PDF Author: Pradeep N
Publisher: Academic Press
ISBN: 0128220449
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation

Machine Learning, Optimization, and Big Data

Machine Learning, Optimization, and Big Data PDF Author: Panos Pardalos
Publisher: Springer
ISBN: 3319279262
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
This book constitutes revised selected papers from the First International Workshop on Machine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily, Italy, in July 2015. The 32 papers presented in this volume were carefully reviewed and selected from 73 submissions. They deal with the algorithms, methods and theories relevant in data science, optimization and machine learning.

Machine Learning, Optimization, and Big Data

Machine Learning, Optimization, and Big Data PDF Author: Giuseppe Nicosia
Publisher: Springer
ISBN: 3319729268
Category : Computers
Languages : en
Pages : 621

Get Book Here

Book Description
This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) PDF Author:
Publisher: World Scientific
ISBN: 9811204586
Category : Computers
Languages : en
Pages : 1001

Get Book Here

Book Description
This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.

Big Data and Machine Learning in Quantitative Investment

Big Data and Machine Learning in Quantitative Investment PDF Author: Tony Guida
Publisher: John Wiley & Sons
ISBN: 1119522196
Category : Business & Economics
Languages : en
Pages : 308

Get Book Here

Book Description
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.