Author: Fatos Tunay Yarman Vural
Publisher: Frontiers Media SA
ISBN: 2832519105
Category : Science
Languages : en
Pages : 160
Book Description
Machine learning methods for human brain imaging
Author: Fatos Tunay Yarman Vural
Publisher: Frontiers Media SA
ISBN: 2832519105
Category : Science
Languages : en
Pages : 160
Book Description
Publisher: Frontiers Media SA
ISBN: 2832519105
Category : Science
Languages : en
Pages : 160
Book Description
Machine Learning and Medical Imaging
Author: Guorong Wu
Publisher: Academic Press
ISBN: 0128041145
Category : Computers
Languages : en
Pages : 514
Book Description
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques
Publisher: Academic Press
ISBN: 0128041145
Category : Computers
Languages : en
Pages : 514
Book Description
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques
Advances in Neuroergonomics and Cognitive Engineering
Author: Hasan Ayaz
Publisher: Springer Nature
ISBN: 3030510417
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This book offers broad overview of the field of cognitive engineering and neuroergonomics, covering emerging practices and future trends toward the harmonious integration of human operators and computer systems. It presents novel theoretical findings on mental workload and stress, activity theory, human reliability, error and risk, and a wealth of cutting-edge applications, such as strategies to make assistive technologies more user-oriented. Further, the book describes key advances in our understanding of cognitive processes, including mechanisms of perception, memory, reasoning, and motor response, with a particular focus on their role in interactions between humans and other elements of computer-based systems. Gathering the proceedings of the AHFE 2020 Virtual Conferences on Neuroergonomics and Cognitive Engineering, and Industrial Cognitive Ergonomics and Engineering Psychology, held on 16–20 July 2020, this book provides extensive and timely information for human–computer interaction researchers, human factors engineers and interaction designers, as well as decision-makers.
Publisher: Springer Nature
ISBN: 3030510417
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This book offers broad overview of the field of cognitive engineering and neuroergonomics, covering emerging practices and future trends toward the harmonious integration of human operators and computer systems. It presents novel theoretical findings on mental workload and stress, activity theory, human reliability, error and risk, and a wealth of cutting-edge applications, such as strategies to make assistive technologies more user-oriented. Further, the book describes key advances in our understanding of cognitive processes, including mechanisms of perception, memory, reasoning, and motor response, with a particular focus on their role in interactions between humans and other elements of computer-based systems. Gathering the proceedings of the AHFE 2020 Virtual Conferences on Neuroergonomics and Cognitive Engineering, and Industrial Cognitive Ergonomics and Engineering Psychology, held on 16–20 July 2020, this book provides extensive and timely information for human–computer interaction researchers, human factors engineers and interaction designers, as well as decision-makers.
Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Deep Learning Methods and Applications in Brain Imaging for the Diagnosis of Neurological and Psychiatric Disorders
Author: Hao Zhang
Publisher: Frontiers Media SA
ISBN: 2832555500
Category : Science
Languages : en
Pages : 151
Book Description
Brain imaging has been successfully used to generate image-based biomarkers for various neurological and psychiatric disorders, such as Alzheimer’s and related dementias, Parkinson’s disease, stroke, traumatic brain injury, brain tumors, depression, schizophrenia, etc. However, accurate brain image-based diagnosis at the individual level remains elusive, and this applies to the diagnosis of neuropathological diseases as well as clinical syndromes. In recent years, deep learning techniques, due to their ability to learn complex patterns from large amounts of data, have had remarkable success in various fields, such as computer vision and natural language processing. Applying deep learning methods to brain imaging-assisted diagnosis, while promising, is facing challenges such as insufficiently labeled data, difficulty in interpreting diagnosis results, variations in data acquisition in multi-site projects, integration of multimodal data, clinical heterogeneity, etc. The goal of this research topic is to gather cutting-edge research that showcases the application of deep learning methods in brain imaging for the diagnosis of neurological and psychiatric disorders. We encourage submissions that demonstrate novel approaches to overcome various abovementioned difficulties and achieve more accurate, reliable, generalizable, and interpretable diagnosis of neurological and psychiatric disorders in this field.
Publisher: Frontiers Media SA
ISBN: 2832555500
Category : Science
Languages : en
Pages : 151
Book Description
Brain imaging has been successfully used to generate image-based biomarkers for various neurological and psychiatric disorders, such as Alzheimer’s and related dementias, Parkinson’s disease, stroke, traumatic brain injury, brain tumors, depression, schizophrenia, etc. However, accurate brain image-based diagnosis at the individual level remains elusive, and this applies to the diagnosis of neuropathological diseases as well as clinical syndromes. In recent years, deep learning techniques, due to their ability to learn complex patterns from large amounts of data, have had remarkable success in various fields, such as computer vision and natural language processing. Applying deep learning methods to brain imaging-assisted diagnosis, while promising, is facing challenges such as insufficiently labeled data, difficulty in interpreting diagnosis results, variations in data acquisition in multi-site projects, integration of multimodal data, clinical heterogeneity, etc. The goal of this research topic is to gather cutting-edge research that showcases the application of deep learning methods in brain imaging for the diagnosis of neurological and psychiatric disorders. We encourage submissions that demonstrate novel approaches to overcome various abovementioned difficulties and achieve more accurate, reliable, generalizable, and interpretable diagnosis of neurological and psychiatric disorders in this field.
Graph Learning for Brain Imaging
Author: Feng Liu
Publisher: Frontiers Media SA
ISBN: 2832501346
Category : Science
Languages : en
Pages : 141
Book Description
Publisher: Frontiers Media SA
ISBN: 2832501346
Category : Science
Languages : en
Pages : 141
Book Description
Readings in Machine Learning
Author: Jude W. Shavlik
Publisher: Morgan Kaufmann
ISBN: 9781558601437
Category : Computers
Languages : en
Pages : 868
Book Description
The ability to learn is a fundamental characteristic of intelligent behavior. Consequently, machine learning has been a focus of artificial intelligence since the beginnings of AI in the 1950s. The 1980s saw tremendous growth in the field, and this growth promises to continue with valuable contributions to science, engineering, and business. Readings in Machine Learning collects the best of the published machine learning literature, including papers that address a wide range of learning tasks, and that introduce a variety of techniques for giving machines the ability to learn. The editors, in cooperation with a group of expert referees, have chosen important papers that empirically study, theoretically analyze, or psychologically justify machine learning algorithms. The papers are grouped into a dozen categories, each of which is introduced by the editors.
Publisher: Morgan Kaufmann
ISBN: 9781558601437
Category : Computers
Languages : en
Pages : 868
Book Description
The ability to learn is a fundamental characteristic of intelligent behavior. Consequently, machine learning has been a focus of artificial intelligence since the beginnings of AI in the 1950s. The 1980s saw tremendous growth in the field, and this growth promises to continue with valuable contributions to science, engineering, and business. Readings in Machine Learning collects the best of the published machine learning literature, including papers that address a wide range of learning tasks, and that introduce a variety of techniques for giving machines the ability to learn. The editors, in cooperation with a group of expert referees, have chosen important papers that empirically study, theoretically analyze, or psychologically justify machine learning algorithms. The papers are grouped into a dozen categories, each of which is introduced by the editors.
Learning with Support Vector Machines
Author: Colin Campbell
Publisher: Morgan & Claypool Publishers
ISBN: 1608456161
Category : Computers
Languages : en
Pages : 97
Book Description
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
Publisher: Morgan & Claypool Publishers
ISBN: 1608456161
Category : Computers
Languages : en
Pages : 97
Book Description
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
Toward Brain-computer Interfacing
Author: Guido Dornhege
Publisher: MIT Press
ISBN: 0262042444
Category : Brain mapping
Languages : en
Pages : 520
Book Description
This volume presents a timely overview of the latest BCI research, with contributions from many of the important research groups in the field.
Publisher: MIT Press
ISBN: 0262042444
Category : Brain mapping
Languages : en
Pages : 520
Book Description
This volume presents a timely overview of the latest BCI research, with contributions from many of the important research groups in the field.
Electromagnetic Brain Imaging
Author: Kensuke Sekihara
Publisher: Springer
ISBN: 3319149474
Category : Medical
Languages : en
Pages : 277
Book Description
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Publisher: Springer
ISBN: 3319149474
Category : Medical
Languages : en
Pages : 277
Book Description
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.