Author: Ibrahim (Abe) M. Elfadel
Publisher: Springer
ISBN: 3030046664
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Machine Learning in VLSI Computer-Aided Design
Author: Ibrahim (Abe) M. Elfadel
Publisher: Springer
ISBN: 3030046664
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Publisher: Springer
ISBN: 3030046664
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
VLSI CAD Tools and Applications
Author: Wolfgang Fichtner
Publisher: Springer Science & Business Media
ISBN: 1461319854
Category : Technology & Engineering
Languages : en
Pages : 555
Book Description
The summer school on VLSf GAD Tools and Applications was held from July 21 through August 1, 1986 at Beatenberg in the beautiful Bernese Oberland in Switzerland. The meeting was given under the auspices of IFIP WG 10. 6 VLSI, and it was sponsored by the Swiss Federal Institute of Technology Zurich, Switzerland. Eighty-one professionals were invited to participate in the summer school, including 18 lecturers. The 81 participants came from the following countries: Australia (1), Denmark (1), Federal Republic of Germany (12), France (3), Italy (4), Norway (1), South Korea (1), Sweden (5), United Kingdom (1), United States of America (13), and Switzerland (39). Our goal in the planning for the summer school was to introduce the audience into the realities of CAD tools and their applications to VLSI design. This book contains articles by all 18 invited speakers that lectured at the summer school. The reader should realize that it was not intended to publish a textbook. However, the chapters in this book are more or less self-contained treatments of the particular subjects. Chapters 1 and 2 give a broad introduction to VLSI Design. Simulation tools and their algorithmic foundations are treated in Chapters 3 to 5 and 17. Chapters 6 to 9 provide an excellent treatment of modern layout tools. The use of CAD tools and trends in the design of 32-bit microprocessors are the topics of Chapters 10 through 16. Important aspects in VLSI testing and testing strategies are given in Chapters 18 and 19.
Publisher: Springer Science & Business Media
ISBN: 1461319854
Category : Technology & Engineering
Languages : en
Pages : 555
Book Description
The summer school on VLSf GAD Tools and Applications was held from July 21 through August 1, 1986 at Beatenberg in the beautiful Bernese Oberland in Switzerland. The meeting was given under the auspices of IFIP WG 10. 6 VLSI, and it was sponsored by the Swiss Federal Institute of Technology Zurich, Switzerland. Eighty-one professionals were invited to participate in the summer school, including 18 lecturers. The 81 participants came from the following countries: Australia (1), Denmark (1), Federal Republic of Germany (12), France (3), Italy (4), Norway (1), South Korea (1), Sweden (5), United Kingdom (1), United States of America (13), and Switzerland (39). Our goal in the planning for the summer school was to introduce the audience into the realities of CAD tools and their applications to VLSI design. This book contains articles by all 18 invited speakers that lectured at the summer school. The reader should realize that it was not intended to publish a textbook. However, the chapters in this book are more or less self-contained treatments of the particular subjects. Chapters 1 and 2 give a broad introduction to VLSI Design. Simulation tools and their algorithmic foundations are treated in Chapters 3 to 5 and 17. Chapters 6 to 9 provide an excellent treatment of modern layout tools. The use of CAD tools and trends in the design of 32-bit microprocessors are the topics of Chapters 10 through 16. Important aspects in VLSI testing and testing strategies are given in Chapters 18 and 19.
VLSI Physical Design: From Graph Partitioning to Timing Closure
Author: Andrew B. Kahng
Publisher: Springer Nature
ISBN: 3030964159
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota
Publisher: Springer Nature
ISBN: 3030964159
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota
Machine Learning Applications in Electronic Design Automation
Author: Haoxing Ren
Publisher: Springer Nature
ISBN: 303113074X
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.
Publisher: Springer Nature
ISBN: 303113074X
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.
Mobile Computing and Sustainable Informatics
Author: Subarna Shakya
Publisher: Springer Nature
ISBN: 9811618666
Category : Technology & Engineering
Languages : en
Pages : 864
Book Description
This book gathers selected high-quality research papers presented at International Conference on Mobile Computing and Sustainable Informatics (ICMCSI 2021) organized by Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, during 29–30 January 2021. The book discusses recent developments in mobile communication technologies ranging from mobile edge computing devices, to personalized, embedded and sustainable applications. The book covers vital topics like mobile networks, computing models, algorithms, sustainable models and advanced informatics that supports the symbiosis of mobile computing and sustainable informatics.
Publisher: Springer Nature
ISBN: 9811618666
Category : Technology & Engineering
Languages : en
Pages : 864
Book Description
This book gathers selected high-quality research papers presented at International Conference on Mobile Computing and Sustainable Informatics (ICMCSI 2021) organized by Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, during 29–30 January 2021. The book discusses recent developments in mobile communication technologies ranging from mobile edge computing devices, to personalized, embedded and sustainable applications. The book covers vital topics like mobile networks, computing models, algorithms, sustainable models and advanced informatics that supports the symbiosis of mobile computing and sustainable informatics.
AI Applications for Clean Energy and Sustainability
Author: Riswandi, Budi Agus
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 485
Book Description
The global demand for clean energy solutions the urgency of addressing climate change continue to intensify, and as such, the need for innovative approaches becomes increasingly paramount. However, navigating the complex landscape of clean energy production and sustainability presents significant challenges. Traditional methods often fall short in efficiently optimizing renewable energy systems and mitigating environmental impacts. Moreover, the integration of artificial intelligence (AI) into the energy sector remains underexplored, despite its potential to revolutionize operations and drive sustainable development. AI Applications for Clean Energy and Sustainability emerges, working to tackle these pressing issues. This comprehensive volume delves into the transformative power of AI in revolutionizing clean energy production, distribution, and management. By harnessing machine learning algorithms, data analytics, and optimization techniques, the book offers innovative solutions to enhance the efficiency, reliability, and scalability of renewable energy systems. Through real-world case studies and practical examples, it illustrates AI's potential to optimize energy infrastructure, monitor marine ecosystems, and predict climate change impacts, thereby paving the way for a more sustainable future.
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 485
Book Description
The global demand for clean energy solutions the urgency of addressing climate change continue to intensify, and as such, the need for innovative approaches becomes increasingly paramount. However, navigating the complex landscape of clean energy production and sustainability presents significant challenges. Traditional methods often fall short in efficiently optimizing renewable energy systems and mitigating environmental impacts. Moreover, the integration of artificial intelligence (AI) into the energy sector remains underexplored, despite its potential to revolutionize operations and drive sustainable development. AI Applications for Clean Energy and Sustainability emerges, working to tackle these pressing issues. This comprehensive volume delves into the transformative power of AI in revolutionizing clean energy production, distribution, and management. By harnessing machine learning algorithms, data analytics, and optimization techniques, the book offers innovative solutions to enhance the efficiency, reliability, and scalability of renewable energy systems. Through real-world case studies and practical examples, it illustrates AI's potential to optimize energy infrastructure, monitor marine ecosystems, and predict climate change impacts, thereby paving the way for a more sustainable future.
Leveraging Artificial Intelligence in Engineering, Management, and Safety of Infrastructure
Author: M.Z. Naser
Publisher: CRC Press
ISBN: 1000788997
Category : Computers
Languages : en
Pages : 459
Book Description
The design, construction, and upkeep of infrastructure is comprised of a multitude of dimensions spanning a highly complex paradigm of interconnected opportunities and challenges. While traditional methods fall short of adequately accounting for such complexity, artificial intelligence (AI) presents novel and out-of-the-box solutions that effectively tackle the growing demands of our infrastructure. The convergence between AI and civil engineering is an emerging frontier with tremendous potential. The book is likely to provide a boost to the state of infrastructure engineering by fostering a new look at civil engineering that capitalizes on AI as its main driver. It highlights the ongoing push to adopt and leverage AI to realize contemporary, intelligent, safe, and resilient infrastructure. The book comprises interdisciplinary and novel works from across the globe. It presents findings from innovative efforts supplemented with physical tests, numerical simulations, and case studies – all of which can be used as benchmarks to carry out future experiments and/or facilitate the development of future AI models in structural engineering, traffic engineering, construction engineering, and construction materials. The book will serve as a guide for a wide range of audiences, including senior undergraduate and graduate students, professionals, and government officials of civil, traffic, and computer engineering backgrounds, as well as for those engaged in urban planning and human sciences.
Publisher: CRC Press
ISBN: 1000788997
Category : Computers
Languages : en
Pages : 459
Book Description
The design, construction, and upkeep of infrastructure is comprised of a multitude of dimensions spanning a highly complex paradigm of interconnected opportunities and challenges. While traditional methods fall short of adequately accounting for such complexity, artificial intelligence (AI) presents novel and out-of-the-box solutions that effectively tackle the growing demands of our infrastructure. The convergence between AI and civil engineering is an emerging frontier with tremendous potential. The book is likely to provide a boost to the state of infrastructure engineering by fostering a new look at civil engineering that capitalizes on AI as its main driver. It highlights the ongoing push to adopt and leverage AI to realize contemporary, intelligent, safe, and resilient infrastructure. The book comprises interdisciplinary and novel works from across the globe. It presents findings from innovative efforts supplemented with physical tests, numerical simulations, and case studies – all of which can be used as benchmarks to carry out future experiments and/or facilitate the development of future AI models in structural engineering, traffic engineering, construction engineering, and construction materials. The book will serve as a guide for a wide range of audiences, including senior undergraduate and graduate students, professionals, and government officials of civil, traffic, and computer engineering backgrounds, as well as for those engaged in urban planning and human sciences.
Emergent Converging Technologies and Biomedical Systems
Author: Shruti Jain (Associate professor of electronics and communication engineering)
Publisher: Springer Nature
ISBN: 981998646X
Category : Biomedical engineering
Languages : en
Pages : 715
Book Description
The book contains proceedings of the International Conference on Emergent Converging Technologies and Biomedical Systems ETBS 2023. It includes papers on wireless multimedia networks, green wireless networks, electric vehicles, biomedical signal processing, and instrumentation, wearable sensors for health care monitoring, biomedical imaging, and bio-materials, modeling, and simulation in medicine biomedical, and health informatics. The book serves as a useful guide for educators, researchers, and developers working in the areas of signal processing, imaging, computing, instrumentation, artificial intelligence, and their related applications. This book also provides support and aid to the researchers involved in designing the latest advancements in healthcare technologies.
Publisher: Springer Nature
ISBN: 981998646X
Category : Biomedical engineering
Languages : en
Pages : 715
Book Description
The book contains proceedings of the International Conference on Emergent Converging Technologies and Biomedical Systems ETBS 2023. It includes papers on wireless multimedia networks, green wireless networks, electric vehicles, biomedical signal processing, and instrumentation, wearable sensors for health care monitoring, biomedical imaging, and bio-materials, modeling, and simulation in medicine biomedical, and health informatics. The book serves as a useful guide for educators, researchers, and developers working in the areas of signal processing, imaging, computing, instrumentation, artificial intelligence, and their related applications. This book also provides support and aid to the researchers involved in designing the latest advancements in healthcare technologies.
Opto-VLSI Devices and Circuits for Biomedical and Healthcare Applications
Author: Ankur Kumar
Publisher: CRC Press
ISBN: 1000932346
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries. Discusses advanced concepts in the field of electro-optics devices for medical applications. Presents optimization techniques including logical effort, particle swarm optimization and genetic algorithm to design Opto-VLSI devices and circuits. Showcases the concepts of artificial intelligence and machine learning for smart medical devices and data auto-collection for distance treatment. Covers advanced Opto-VLSI devices including a field-effect transistor and optical sensors, spintronic and photonic devices. Highlights application of flexible electronics in health monitoring and artificial intelligence integration for better medical devices. The text presents the advances in the fields of optics and VLSI and their applicability in diverse areas including biomedical engineering and the healthcare sector. It covers important topics such as FET biosensors, optical biosensors and advanced optical materials. It further showcases the significance of smart technologies such as artificial intelligence, machine learning and the internet of things for the biomedical and healthcare industries. It will serve as an ideal design book for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering and biomedical engineering.
Publisher: CRC Press
ISBN: 1000932346
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries. Discusses advanced concepts in the field of electro-optics devices for medical applications. Presents optimization techniques including logical effort, particle swarm optimization and genetic algorithm to design Opto-VLSI devices and circuits. Showcases the concepts of artificial intelligence and machine learning for smart medical devices and data auto-collection for distance treatment. Covers advanced Opto-VLSI devices including a field-effect transistor and optical sensors, spintronic and photonic devices. Highlights application of flexible electronics in health monitoring and artificial intelligence integration for better medical devices. The text presents the advances in the fields of optics and VLSI and their applicability in diverse areas including biomedical engineering and the healthcare sector. It covers important topics such as FET biosensors, optical biosensors and advanced optical materials. It further showcases the significance of smart technologies such as artificial intelligence, machine learning and the internet of things for the biomedical and healthcare industries. It will serve as an ideal design book for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering and biomedical engineering.
Machine Learning
Author: Hamed Farhadi
Publisher: BoD – Books on Demand
ISBN: 1789237521
Category : Computers
Languages : en
Pages : 231
Book Description
The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.
Publisher: BoD – Books on Demand
ISBN: 1789237521
Category : Computers
Languages : en
Pages : 231
Book Description
The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.