Machine Learning Fundamentals in Action A Step-by-Step Guide to Implementing Machine Learning Solutions

Machine Learning Fundamentals in Action A Step-by-Step Guide to Implementing Machine Learning Solutions PDF Author: Konstantin Titov
Publisher: Konstantin Titov
ISBN:
Category : Computers
Languages : en
Pages : 228

Get Book Here

Book Description
Master Machine Learning Fundamentals Whether you’re an aspiring data scientist, business professional, or curious learner, Machine Learning Fundamentals in Action is your essential guide to the world of machine learning. Packed with practical examples and real-world applications, this book helps you navigate key concepts and techniques transforming industries today. Unlock the Power of Machine Learning Discover every step, from data preparation to building and deploying models, with clear and actionable insights. Who Is This Book For? Aspiring Data Scientists: Build a solid foundation in ML concepts. Business Professionals: Use data-driven decisions to solve challenges. Developers and Engineers: Get hands-on experience with model-building techniques. Curious Learners: Understand ML with easy, step-by-step explanations. What You’ll Learn: Core ML principles and real-world applications Types of ML: Supervised, Unsupervised, and Reinforcement Learning Advanced topics: Neural networks, deep learning, and more How to deploy models and avoid common pitfalls Start your machine learning journey today!

Machine Learning Fundamentals in Action A Step-by-Step Guide to Implementing Machine Learning Solutions

Machine Learning Fundamentals in Action A Step-by-Step Guide to Implementing Machine Learning Solutions PDF Author: Konstantin Titov
Publisher: Konstantin Titov
ISBN:
Category : Computers
Languages : en
Pages : 228

Get Book Here

Book Description
Master Machine Learning Fundamentals Whether you’re an aspiring data scientist, business professional, or curious learner, Machine Learning Fundamentals in Action is your essential guide to the world of machine learning. Packed with practical examples and real-world applications, this book helps you navigate key concepts and techniques transforming industries today. Unlock the Power of Machine Learning Discover every step, from data preparation to building and deploying models, with clear and actionable insights. Who Is This Book For? Aspiring Data Scientists: Build a solid foundation in ML concepts. Business Professionals: Use data-driven decisions to solve challenges. Developers and Engineers: Get hands-on experience with model-building techniques. Curious Learners: Understand ML with easy, step-by-step explanations. What You’ll Learn: Core ML principles and real-world applications Types of ML: Supervised, Unsupervised, and Reinforcement Learning Advanced topics: Neural networks, deep learning, and more How to deploy models and avoid common pitfalls Start your machine learning journey today!

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition PDF Author: Mehryar Mohri
Publisher: MIT Press
ISBN: 0262351366
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Get Book Here

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 851

Get Book Here

Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Introducing Machine Learning

Introducing Machine Learning PDF Author: Dino Esposito
Publisher: Microsoft Press
ISBN: 0135588383
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library

Deep Reinforcement Learning in Action

Deep Reinforcement Learning in Action PDF Author: Alexander Zai
Publisher: Manning
ISBN: 1617295434
Category : Computers
Languages : en
Pages : 381

Get Book Here

Book Description
Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error. About the book Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, you’ll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, you’ll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym. What's inside Building and training DRL networks The most popular DRL algorithms for learning and problem solving Evolutionary algorithms for curiosity and multi-agent learning All examples available as Jupyter Notebooks About the reader For readers with intermediate skills in Python and deep learning. About the author Alexander Zai is a machine learning engineer at Amazon AI. Brandon Brown is a machine learning and data analysis blogger. Table of Contents PART 1 - FOUNDATIONS 1. What is reinforcement learning? 2. Modeling reinforcement learning problems: Markov decision processes 3. Predicting the best states and actions: Deep Q-networks 4. Learning to pick the best policy: Policy gradient methods 5. Tackling more complex problems with actor-critic methods PART 2 - ABOVE AND BEYOND 6. Alternative optimization methods: Evolutionary algorithms 7. Distributional DQN: Getting the full story 8.Curiosity-driven exploration 9. Multi-agent reinforcement learning 10. Interpretable reinforcement learning: Attention and relational models 11. In conclusion: A review and roadmap

R Deep Learning Essentials

R Deep Learning Essentials PDF Author: Mark Hodnett
Publisher: Packt Publishing Ltd
ISBN: 1788997808
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.

The Hundred-page Machine Learning Book

The Hundred-page Machine Learning Book PDF Author: Andriy Burkov
Publisher:
ISBN: 9781999579500
Category : Machine learning
Languages : en
Pages : 141

Get Book Here

Book Description
Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description