Machine Learning for Multimedia Content Analysis

Machine Learning for Multimedia Content Analysis PDF Author: Yihong Gong
Publisher: Springer Science & Business Media
ISBN: 0387699422
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Machine Learning for Multimedia Content Analysis

Machine Learning for Multimedia Content Analysis PDF Author: Yihong Gong
Publisher: Springer Science & Business Media
ISBN: 0387699422
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Machine Learning Techniques for Multimedia

Machine Learning Techniques for Multimedia PDF Author: Matthieu Cord
Publisher: Springer Science & Business Media
ISBN: 3540751718
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.

Machine Learning for Audio, Image and Video Analysis

Machine Learning for Audio, Image and Video Analysis PDF Author: Francesco Camastra
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.

Challenges and Applications of Data Analytics in Social Perspectives

Challenges and Applications of Data Analytics in Social Perspectives PDF Author: Sathiyamoorthi, V.
Publisher: IGI Global
ISBN: 179982568X
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Machine Learning for Intelligent Multimedia Analytics

Machine Learning for Intelligent Multimedia Analytics PDF Author: Pardeep Kumar
Publisher: Springer Nature
ISBN: 9811594929
Category : Technology & Engineering
Languages : en
Pages : 341

Get Book Here

Book Description
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.

TV Content Analysis

TV Content Analysis PDF Author: Yiannis Kompatsiaris
Publisher: CRC Press
ISBN: 1466559128
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
The rapid advancement of digital multimedia technologies has not only revolutionized the production and distribution of audiovisual content, but also created the need to efficiently analyze TV programs to enable applications for content managers and consumers. Leaving no stone unturned, TV Content Analysis: Techniques and Applications provides a de

Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning PDF Author: Solanki, Arun
Publisher: IGI Global
ISBN: 1522596453
Category : Computers
Languages : en
Pages : 674

Get Book Here

Book Description
As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.

Understanding-Oriented Multimedia Content Analysis

Understanding-Oriented Multimedia Content Analysis PDF Author: Zechao Li
Publisher: Springer
ISBN: 9811036896
Category : Computers
Languages : en
Pages : 166

Get Book Here

Book Description
This book offers a systematic introduction to an understanding-oriented approach to multimedia content analysis. It integrates the visual understanding and learning models into a unified framework, within which the visual understanding guides the model learning while the learned models improve the visual understanding. More specifically, it discusses multimedia content representations and analysis including feature selection, feature extraction, image tagging, user-oriented tag recommendation and understanding-oriented multimedia applications. The book was nominated by the University of Chinese Academy of Sciences and China Computer Federation as an outstanding PhD thesis. By providing the fundamental technologies and state-of-the-art methods, it is a valuable resource for graduate students and researchers working in the field computer vision and machine learning.

Multimedia Content Analysis

Multimedia Content Analysis PDF Author: Ajay Divakaran
Publisher: Springer Science & Business Media
ISBN: 0387765697
Category : Computers
Languages : en
Pages : 412

Get Book Here

Book Description
Multimedia Content Analysis: Theory and Applications covers the latest in multimedia content analysis and applications based on such analysis. As research has progressed, it has become clear that this field has to appeal to other disciplines such as psycho-physics, media production, etc. This book consists of invited chapters that cover the entire range of the field. Some of the topics covered include low-level audio-visual analysis based retrieval and indexing techniques, the TRECVID effort, video browsing interfaces, content creation and content analysis, and multimedia analysis-based applications, among others. The chapters are written by leading researchers in the multimedia field.

Deep Learning for Multimedia Processing Applications

Deep Learning for Multimedia Processing Applications PDF Author: Uzair Aslam Bhatti
Publisher: CRC Press
ISBN: 1003828051
Category : Computers
Languages : en
Pages : 481

Get Book Here

Book Description
Deep Learning for Multimedia Processing Applications is a comprehensive guide that explores the revolutionary impact of deep learning techniques in the field of multimedia processing. Written for a wide range of readers, from students to professionals, this book offers a concise and accessible overview of the application of deep learning in various multimedia domains, including image processing, video analysis, audio recognition, and natural language processing. Divided into two volumes, Volume Two delves into advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs), explaining their unique capabilities in multimedia tasks. Readers will discover how deep learning techniques enable accurate and efficient image recognition, object detection, semantic segmentation, and image synthesis. The book also covers video analysis techniques, including action recognition, video captioning, and video generation, highlighting the role of deep learning in extracting meaningful information from videos. Furthermore, the book explores audio processing tasks such as speech recognition, music classification, and sound event detection using deep learning models. It demonstrates how deep learning algorithms can effectively process audio data, opening up new possibilities in multimedia applications. Lastly, the book explores the integration of deep learning with natural language processing techniques, enabling systems to understand, generate, and interpret textual information in multimedia contexts. Throughout the book, practical examples, code snippets, and real-world case studies are provided to help readers gain hands-on experience in implementing deep learning solutions for multimedia processing. Deep Learning for Multimedia Processing Applications is an essential resource for anyone interested in harnessing the power of deep learning to unlock the vast potential of multimedia data.