Machine Learning for Decision Sciences with Case Studies in Python

Machine Learning for Decision Sciences with Case Studies in Python PDF Author: S. Sumathi
Publisher: CRC Press
ISBN: 1000590933
Category : Computers
Languages : en
Pages : 477

Get Book Here

Book Description
This book provides a detailed description of machine learning algorithms in data analytics, data science life cycle, Python for machine learning, linear regression, logistic regression, and so forth. It addresses the concepts of machine learning in a practical sense providing complete code and implementation for real-world examples in electrical, oil and gas, e-commerce, and hi-tech industries. The focus is on Python programming for machine learning and patterns involved in decision science for handling data. Features: Explains the basic concepts of Python and its role in machine learning. Provides comprehensive coverage of feature engineering including real-time case studies. Perceives the structural patterns with reference to data science and statistics and analytics. Includes machine learning-based structured exercises. Appreciates different algorithmic concepts of machine learning including unsupervised, supervised, and reinforcement learning. This book is aimed at researchers, professionals, and graduate students in data science, machine learning, computer science, and electrical and computer engineering.

Machine Learning for Decision Sciences with Case Studies in Python

Machine Learning for Decision Sciences with Case Studies in Python PDF Author: S. Sumathi
Publisher: CRC Press
ISBN: 1000590933
Category : Computers
Languages : en
Pages : 477

Get Book Here

Book Description
This book provides a detailed description of machine learning algorithms in data analytics, data science life cycle, Python for machine learning, linear regression, logistic regression, and so forth. It addresses the concepts of machine learning in a practical sense providing complete code and implementation for real-world examples in electrical, oil and gas, e-commerce, and hi-tech industries. The focus is on Python programming for machine learning and patterns involved in decision science for handling data. Features: Explains the basic concepts of Python and its role in machine learning. Provides comprehensive coverage of feature engineering including real-time case studies. Perceives the structural patterns with reference to data science and statistics and analytics. Includes machine learning-based structured exercises. Appreciates different algorithmic concepts of machine learning including unsupervised, supervised, and reinforcement learning. This book is aimed at researchers, professionals, and graduate students in data science, machine learning, computer science, and electrical and computer engineering.

Data Science Projects with Python

Data Science Projects with Python PDF Author: Stephen Klosterman
Publisher: Packt Publishing Ltd
ISBN: 1800569440
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.

Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python PDF Author: Abdulhamit Subasi
Publisher: Academic Press
ISBN: 0128213809
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Data Science Projects with Python

Data Science Projects with Python PDF Author: Stephen Klosterman
Publisher: Packt Publishing Ltd
ISBN: 183855260X
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.

Case Studies on Holistic Medical Interventions

Case Studies on Holistic Medical Interventions PDF Author: Sai Kiran Oruganti
Publisher: CRC Press
ISBN: 1040327435
Category : Medical
Languages : en
Pages : 1033

Get Book Here

Book Description
The First International Medical Case Reports Conference, 2024(IMED-C) was a pioneering event set to redefine the landscape of medical research and case reporting. This conference was designed to foster collaboration and knowledge exchange among healthcare professionals, researchers, and scholars worldwide. What made this edition exceptional was its virtual online format, breaking down geographical barriers and transforming the way medical knowledge is shared. It was a platform where the latest breakthroughs in medical case reports were unveiled, innovative diagnostic strategies and treatment approaches showcased, and visionary ideas were given a voice. It became a central meeting point for professionals and scholars seeking to share experiences and expertise across borders.

Python Machine Learning Case Studies

Python Machine Learning Case Studies PDF Author: Danish Haroon
Publisher: Apress
ISBN: 1484228235
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs. By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems. What You Will Learn Gain insights into machine learning concepts Work on real-world applications of machine learning Learn concepts of model selection and optimization Get a hands-on overview of Python from a machine learning point of view Who This Book Is For Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Data Science and Machine Learning

Data Science and Machine Learning PDF Author: Dirk P. Kroese
Publisher: CRC Press
ISBN: 1000730778
Category : Business & Economics
Languages : en
Pages : 538

Get Book Here

Book Description
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision PDF Author: L. Ashok Kumar
Publisher: CRC Press
ISBN: 1000875601
Category : Business & Economics
Languages : en
Pages : 251

Get Book Here

Book Description
Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision provides an overview of general deep learning methodology and its applications of natural language processing (NLP), speech, and computer vision tasks. It simplifies and presents the concepts of deep learning in a comprehensive manner, with suitable, full-fledged examples of deep learning models, with an aim to bridge the gap between the theoretical and the applications using case studies with code, experiments, and supporting analysis. Features: Covers latest developments in deep learning techniques as applied to audio analysis, computer vision, and natural language processing. Introduces contemporary applications of deep learning techniques as applied to audio, textual, and visual processing. Discovers deep learning frameworks and libraries for NLP, speech, and computer vision in Python. Gives insights into using the tools and libraries in Python for real-world applications. Provides easily accessible tutorials and real-world case studies with code to provide hands-on experience. This book is aimed at researchers and graduate students in computer engineering, image, speech, and text processing.

Decision Sciences for COVID-19

Decision Sciences for COVID-19 PDF Author: Said Ali Hassan
Publisher: Springer Nature
ISBN: 3030870197
Category : Business & Economics
Languages : en
Pages : 475

Get Book Here

Book Description
This book presents best practices involving applications of decision sciences, business tactics and behavioral sciences for COVID-19. Addressing concrete problems in these vital fields, it focuses on theoretical and methodological investigations of managerial decisions that drive production and service enterprises’ productivity and success. Moreover, it presents optimization techniques and tools that can also be adopted for other applications in various research areas after a thorough analysis of the specific problem. The book is intended for researchers and practitioners seeking optimum solutions to real-life problems in various application areas concerning COVID-19, helping them make scientifically founded decisions.

Machine Learning and Deep Learning Using Python and TensorFlow

Machine Learning and Deep Learning Using Python and TensorFlow PDF Author: Venkata Reddy Konasani
Publisher: McGraw Hill Professional
ISBN: 1260462307
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory