Machine Learning: ECML 2006

Machine Learning: ECML 2006 PDF Author: Johannes Fürnkranz
Publisher: Springer Science & Business Media
ISBN: 354045375X
Category : Computers
Languages : en
Pages : 873

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML 2006

Machine Learning: ECML 2006 PDF Author: Johannes Fürnkranz
Publisher: Springer Science & Business Media
ISBN: 354045375X
Category : Computers
Languages : en
Pages : 873

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML 2007

Machine Learning: ECML 2007 PDF Author: Joost N. Kok
Publisher: Springer Science & Business Media
ISBN: 3540749578
Category : Computers
Languages : en
Pages : 829

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of four invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Numerical Methods for Metamaterial Design

Numerical Methods for Metamaterial Design PDF Author: Kenneth Diest
Publisher: Springer Science & Business Media
ISBN: 9400766645
Category : Science
Languages : en
Pages : 226

Get Book Here

Book Description
This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Wolfgang Ertel
Publisher: Springer
ISBN: 3319584871
Category : Computers
Languages : en
Pages : 365

Get Book Here

Book Description
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.

Machine Learning: ECML 2006

Machine Learning: ECML 2006 PDF Author: Johannes Fürnkranz
Publisher: Springer
ISBN: 354046056X
Category : Computers
Languages : en
Pages : 873

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Wray Buntine
Publisher: Springer
ISBN: 3642041744
Category : Computers
Languages : en
Pages : 787

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Foundations of Probabilistic Logic Programming

Foundations of Probabilistic Logic Programming PDF Author: Fabrizio Riguzzi
Publisher: CRC Press
ISBN: 1000923215
Category : Computers
Languages : en
Pages : 548

Get Book Here

Book Description
Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.

The Dynamic Brain

The Dynamic Brain PDF Author: Mingzhou Ding, PhD
Publisher: Oxford University Press
ISBN: 0199397465
Category : Medical
Languages : en
Pages :

Get Book Here

Book Description
It is a well-known fact of neurophysiology that neuronal responses to identically presented stimuli are extremely variable. This variability has in the past often been regarded as "noise." At the single neuron level, interspike interval (ISI) histograms constructed during either spontaneous or stimulus evoked activity reveal a Poisson type distribution. These observations have been taken as evidence that neurons are intrinsically "noisy" in their firing properties. In fact, the use of averaging techniques, like post-stimulus time histograms (PSTH) or event-related potentials (ERPs) have largely been justified based on the presence of what was believed to be noise in the neuronal responses. More recent attempts to measure the information content of single neuron spike trains have revealed that a surprising amount of information can be coded in spike trains even in the presence of trial-to-trial variability. Multiple single unit recording experiments have suggested that variability formerly attributed to noise in single cell recordings may instead simply reflect system-wide changes in cellular response properties. These observations raise the possibility that, at least at the level of neuronal coding, the variability seen in single neuron responses may not simply reflect an underlying noisy process. They further raise the very distinct possibility that noise may in fact contain real, meaningful information which is available for the nervous system in information processing. To understand how neurons work in concert to bring about coherent behavior and its breakdown in disease, neuroscientists now routinely record simultaneously from hundreds of different neurons and from different brain areas, and then attempt to evaluate the network activities by computing various interdependence measures, including cross correlation, phase synchronization and spectral coherence. This book examines neuronal variability from theoretical, experimental and clinical perspectives.

Cyber-Security Threats, Actors, and Dynamic Mitigation

Cyber-Security Threats, Actors, and Dynamic Mitigation PDF Author: Nicholas Kolokotronis
Publisher: CRC Press
ISBN: 1000366618
Category : Technology & Engineering
Languages : en
Pages : 395

Get Book Here

Book Description
Cyber-Security Threats, Actors, and Dynamic Mitigation provides both a technical and state-of-the-art perspective as well as a systematic overview of the recent advances in different facets of cyber-security. It covers the methodologies for modeling attack strategies used by threat actors targeting devices, systems, and networks such as smart homes, critical infrastructures, and industrial IoT. With a comprehensive review of the threat landscape, the book explores both common and sophisticated threats to systems and networks. Tools and methodologies are presented for precise modeling of attack strategies, which can be used both proactively in risk management and reactively in intrusion prevention and response systems. Several contemporary techniques are offered ranging from reconnaissance and penetration testing to malware detection, analysis, and mitigation. Advanced machine learning-based approaches are also included in the area of anomaly-based detection, that are capable of detecting attacks relying on zero-day vulnerabilities and exploits. Academics, researchers, and professionals in cyber-security who want an in-depth look at the contemporary aspects of the field will find this book of interest. Those wanting a unique reference for various cyber-security threats and how they are detected, analyzed, and mitigated will reach for this book often.

Reinforcement Learning

Reinforcement Learning PDF Author: Marco Wiering
Publisher: Springer Science & Business Media
ISBN: 3642276458
Category : Technology & Engineering
Languages : en
Pages : 653

Get Book Here

Book Description
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.