Machine Learning: ECML 2005

Machine Learning: ECML 2005 PDF Author: João Gama
Publisher: Springer Science & Business Media
ISBN: 3540292438
Category : Computers
Languages : en
Pages : 784

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 16th European Conference on Machine Learning, ECML 2005, jointly held with PKDD 2005 in Porto, Portugal, in October 2005. The 40 revised full papers and 32 revised short papers presented together with abstracts of 6 invited talks were carefully reviewed and selected from 335 papers submitted to ECML and 30 papers submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML 2005

Machine Learning: ECML 2005 PDF Author: João Gama
Publisher: Springer Science & Business Media
ISBN: 3540292438
Category : Computers
Languages : en
Pages : 784

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 16th European Conference on Machine Learning, ECML 2005, jointly held with PKDD 2005 in Porto, Portugal, in October 2005. The 40 revised full papers and 32 revised short papers presented together with abstracts of 6 invited talks were carefully reviewed and selected from 335 papers submitted to ECML and 30 papers submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Walter Daelemans
Publisher: Springer Science & Business Media
ISBN: 354087478X
Category : Computers
Languages : en
Pages : 714

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning PDF Author: Vineeth Balasubramanian
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Evaluating Learning Algorithms

Evaluating Learning Algorithms PDF Author: Nathalie Japkowicz
Publisher: Cambridge University Press
ISBN: 1139494147
Category : Computers
Languages : en
Pages : 423

Get Book Here

Book Description
The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.

Algorithmic Learning Theory

Algorithmic Learning Theory PDF Author: José L. Balcázar
Publisher: Springer Science & Business Media
ISBN: 3540466495
Category : Computers
Languages : en
Pages : 405

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.

Machine Learning

Machine Learning PDF Author: Kamal Kant Hiran
Publisher: BPB Publications
ISBN: 9391392350
Category : Computers
Languages : en
Pages : 309

Get Book Here

Book Description
Concepts of Machine Learning with Practical Approaches. KEY FEATURES ● Includes real-scenario examples to explain the working of Machine Learning algorithms. ● Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks. ● Full of Python codes, numerous exercises, and model question papers for data science students. DESCRIPTION The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches. This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning. By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems. WHAT YOU WILL LEARN ● Perform feature extraction and feature selection techniques. ● Learn to select the best Machine Learning algorithm for a given problem. ● Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib. ● Practice how to implement different types of Machine Learning techniques. ● Learn about Artificial Neural Network along with the Back Propagation Algorithm. ● Make use of various recommended systems with powerful algorithms. WHO THIS BOOK IS FOR This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory. TABLE OF CONTENTS 1. Introduction 2. Supervised Learning Algorithms 3. Unsupervised Learning 4. Introduction to the Statistical Learning Theory 5. Semi-Supervised Learning and Reinforcement Learning 6. Recommended Systems

Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning PDF Author: Xiaojin Geffner
Publisher: Springer Nature
ISBN: 3031015487
Category : Computers
Languages : en
Pages : 116

Get Book Here

Book Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Intelligent Systems and Applications

Intelligent Systems and Applications PDF Author: Kohei Arai
Publisher: Springer
ISBN: 3030010546
Category : Technology & Engineering
Languages : en
Pages : 1441

Get Book Here

Book Description
Gathering the Proceedings of the 2018 Intelligent Systems Conference (IntelliSys 2018), this book offers a remarkable collection of chapters covering a wide range of topics in intelligent systems and computing, and their real-world applications. The Conference attracted a total of 568 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer review process, after which 194 (including 13 poster papers) were selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle many problems more effectively. This branching out of computational intelligence in several directions, and the use of intelligent systems in everyday applications, have created the need for such an international conference, which serves as a venue for reporting on cutting-edge innovations and developments. This book collects both theory and application-based chapters on all aspects of artificial intelligence, from classical to intelligent scope. Readers are sure to find the book both interesting and valuable, as it presents state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision of future research directions.

Design of Experiments for Reinforcement Learning

Design of Experiments for Reinforcement Learning PDF Author: Christopher Gatti
Publisher: Springer
ISBN: 3319121979
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.

Intelligent Systems Design and Applications

Intelligent Systems Design and Applications PDF Author: Ajith Abraham
Publisher: Springer
ISBN: 3319763482
Category : Technology & Engineering
Languages : en
Pages : 1076

Get Book Here

Book Description
This book highlights recent research on intelligent systems design and applications. It presents 100 selected papers from the 17th International Conference on Intelligent Systems Design and Applications (ISDA 2017), which was held in Delhi, India from December 14 to 16, 2017. The ISDA is a premier conference in the field of Computational Intelligence and brings together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry and the real world. Including contributions by authors from over 30 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.