Author:
Publisher:
ISBN:
Category : Induction (Logic)
Languages : en
Pages : 614
Book Description
Machine Learning, ECML- ...
Author:
Publisher:
ISBN:
Category : Induction (Logic)
Languages : en
Pages : 614
Book Description
Publisher:
ISBN:
Category : Induction (Logic)
Languages : en
Pages : 614
Book Description
Machine Learning: ECML 2002
Author: Tapio Elomaa
Publisher: Springer
ISBN: 9783540440369
Category : Computers
Languages : en
Pages : 538
Book Description
This book constitutes the refereed preceedings of the 13th European Conference on Machine Learning, ECML 2002, held in Helsinki, Finland in August 2002. The 41 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from numerous submissions. Among the topics covered are computational discovery, search strategies, Classification, support vector machines, kernel methods, rule induction, linear learning, decision tree learning, boosting, collaborative learning, statistical learning, clustering, instance-based learning, reinforcement learning, multiagent learning, multirelational learning, Markov decision processes, active learning, etc.
Publisher: Springer
ISBN: 9783540440369
Category : Computers
Languages : en
Pages : 538
Book Description
This book constitutes the refereed preceedings of the 13th European Conference on Machine Learning, ECML 2002, held in Helsinki, Finland in August 2002. The 41 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from numerous submissions. Among the topics covered are computational discovery, search strategies, Classification, support vector machines, kernel methods, rule induction, linear learning, decision tree learning, boosting, collaborative learning, statistical learning, clustering, instance-based learning, reinforcement learning, multiagent learning, multirelational learning, Markov decision processes, active learning, etc.
Advances in Machine Learning I
Author: Jacek Koronacki
Publisher: Springer Science & Business Media
ISBN: 3642051766
Category : Computers
Languages : en
Pages : 521
Book Description
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of expertise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and exceptionally wide intellectual horizons which extended to history, political science and arts. Professor Michalski’s death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest – notably, he was widely cons- ered a father of machine learning.
Publisher: Springer Science & Business Media
ISBN: 3642051766
Category : Computers
Languages : en
Pages : 521
Book Description
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of expertise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and exceptionally wide intellectual horizons which extended to history, political science and arts. Professor Michalski’s death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest – notably, he was widely cons- ered a father of machine learning.
Application of Machine Learning
Author: Yagang Zhang
Publisher: BoD – Books on Demand
ISBN: 9533070358
Category : Computers
Languages : en
Pages : 292
Book Description
The goal of this book is to present the latest applications of machine learning, which mainly include: speech recognition, traffic and fault classification, surface quality prediction in laser machining, network security and bioinformatics, enterprise credit risk evaluation, and so on. This book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides them with a good introduction to many application researches of machine learning, and it is also the source of useful bibliographical information.
Publisher: BoD – Books on Demand
ISBN: 9533070358
Category : Computers
Languages : en
Pages : 292
Book Description
The goal of this book is to present the latest applications of machine learning, which mainly include: speech recognition, traffic and fault classification, surface quality prediction in laser machining, network security and bioinformatics, enterprise credit risk evaluation, and so on. This book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides them with a good introduction to many application researches of machine learning, and it is also the source of useful bibliographical information.
Ensemble Machine Learning
Author: Cha Zhang
Publisher: Springer Science & Business Media
ISBN: 1441993258
Category : Computers
Languages : en
Pages : 332
Book Description
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Publisher: Springer Science & Business Media
ISBN: 1441993258
Category : Computers
Languages : en
Pages : 332
Book Description
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Machine Learning and Data Mining
Author: Igor Kononenko
Publisher: Horwood Publishing
ISBN: 9781904275213
Category : Computers
Languages : en
Pages : 484
Book Description
Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.
Publisher: Horwood Publishing
ISBN: 9781904275213
Category : Computers
Languages : en
Pages : 484
Book Description
Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.
Machine Learning and Data Mining in Pattern Recognition
Author: Petra Perner
Publisher: Springer
ISBN: 3540450653
Category : Computers
Languages : en
Pages : 452
Book Description
TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.
Publisher: Springer
ISBN: 3540450653
Category : Computers
Languages : en
Pages : 452
Book Description
TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.
Conformal Prediction for Reliable Machine Learning
Author: Vineeth Balasubramanian
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323
Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323
Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Algorithms in Ambient Intelligence
Author: W. Verhaegh
Publisher: Springer Science & Business Media
ISBN: 9781402017575
Category : Computers
Languages : en
Pages : 368
Book Description
This book is the outcome of a series of discussions at the Philips Symposium on Intelligent Algorithms, which was held in Eindhoven on December 2002. It contains many exciting and practical examples from this newly developing research field, which can be positioned at the intersection of computer science, discrete mathematics, and artificial intelligence. The examples include machine learning, content management, vision, speech, content augmentation, profiling, music retrieval, feature extraction, audio and video fingerprinting, resource management, multimedia servers, network scheduling, and IC design.
Publisher: Springer Science & Business Media
ISBN: 9781402017575
Category : Computers
Languages : en
Pages : 368
Book Description
This book is the outcome of a series of discussions at the Philips Symposium on Intelligent Algorithms, which was held in Eindhoven on December 2002. It contains many exciting and practical examples from this newly developing research field, which can be positioned at the intersection of computer science, discrete mathematics, and artificial intelligence. The examples include machine learning, content management, vision, speech, content augmentation, profiling, music retrieval, feature extraction, audio and video fingerprinting, resource management, multimedia servers, network scheduling, and IC design.
Database and Expert Systems Applications
Author: Pablo García Bringas
Publisher: Springer
ISBN: 3642152511
Category : Computers
Languages : en
Pages : 525
Book Description
st We welcome you to the proceedings of the 21 International Conference on Database and Expert Systems Applications held in Bilbao. With information and database s- tems being a central topic of computer science, it was to be expected that the integ- tion of knowledge, information and data is today contributing to the again rapidly increasing attractiveness of this field for researchers and practitioners. Since its foundation in 1990, DEXA has been an annual international conference, located in Europe, which showcases state-of-the-art research activities in these areas. DEXA 2010 continued this tradition and provided a forum for presenting and discu- ing research results in the area of database and intelligent systems and advanced - search topics, applications and practically relevant issues related to these areas. It offered attendees the opportunity to extensively discuss requirements, problems, and solutions in the field in the pleasant atmosphere of the city of Bilbao, which is known for its driving industriousness, its top cultural venues and its rich and inspiring he- tage and lifestyle. The University of Deusto with its great educational and research traditions, and the hospitality which the university and the city are so famous for, set the stage for this year’s DEXA conference. This volume contains the papers selected for presentation at the DEXA conference.
Publisher: Springer
ISBN: 3642152511
Category : Computers
Languages : en
Pages : 525
Book Description
st We welcome you to the proceedings of the 21 International Conference on Database and Expert Systems Applications held in Bilbao. With information and database s- tems being a central topic of computer science, it was to be expected that the integ- tion of knowledge, information and data is today contributing to the again rapidly increasing attractiveness of this field for researchers and practitioners. Since its foundation in 1990, DEXA has been an annual international conference, located in Europe, which showcases state-of-the-art research activities in these areas. DEXA 2010 continued this tradition and provided a forum for presenting and discu- ing research results in the area of database and intelligent systems and advanced - search topics, applications and practically relevant issues related to these areas. It offered attendees the opportunity to extensively discuss requirements, problems, and solutions in the field in the pleasant atmosphere of the city of Bilbao, which is known for its driving industriousness, its top cultural venues and its rich and inspiring he- tage and lifestyle. The University of Deusto with its great educational and research traditions, and the hospitality which the university and the city are so famous for, set the stage for this year’s DEXA conference. This volume contains the papers selected for presentation at the DEXA conference.