Author: Edward O. Pyzer-Knapp
Publisher:
ISBN: 9780841235052
Category : Science
Languages : en
Pages : 140
Book Description
Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.
Machine Learning in Chemistry
Author: Edward O. Pyzer-Knapp
Publisher:
ISBN: 9780841235052
Category : Science
Languages : en
Pages : 140
Book Description
Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.
Publisher:
ISBN: 9780841235052
Category : Science
Languages : en
Pages : 140
Book Description
Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.
Computational and Data-Driven Chemistry Using Artificial Intelligence
Author: Takashiro Akitsu
Publisher: Elsevier
ISBN: 0128232722
Category : Science
Languages : en
Pages : 280
Book Description
Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields
Publisher: Elsevier
ISBN: 0128232722
Category : Science
Languages : en
Pages : 280
Book Description
Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields
Machine Learning in Chemistry
Author: Jon Paul Janet
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 189
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 189
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Quantum Chemistry in the Age of Machine Learning
Author: Pavlo O. Dral
Publisher: Elsevier
ISBN: 0323886043
Category : Science
Languages : en
Pages : 702
Book Description
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry
Publisher: Elsevier
ISBN: 0323886043
Category : Science
Languages : en
Pages : 702
Book Description
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Handbook of Materials Modeling
Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903
Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903
Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Reviews in Computational Chemistry, Volume 29
Author: Abby L. Parrill
Publisher: John Wiley & Sons
ISBN: 1119103932
Category : Science
Languages : en
Pages : 486
Book Description
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding
Publisher: John Wiley & Sons
ISBN: 1119103932
Category : Science
Languages : en
Pages : 486
Book Description
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding
Artificial Intelligence in Chemistry
Author: José S. Torrecilla
Publisher: Frontiers Media SA
ISBN: 2889638707
Category :
Languages : en
Pages : 89
Book Description
Publisher: Frontiers Media SA
ISBN: 2889638707
Category :
Languages : en
Pages : 89
Book Description
Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Special Topics in Information Technology
Author: Luigi Piroddi
Publisher: Springer Nature
ISBN: 3030859185
Category : Technology & Engineering
Languages : en
Pages : 151
Book Description
This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists.
Publisher: Springer Nature
ISBN: 3030859185
Category : Technology & Engineering
Languages : en
Pages : 151
Book Description
This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists.