Author: Tao Zeng
Publisher: Frontiers Media SA
ISBN: 2889635546
Category :
Languages : en
Pages : 393
Book Description
Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine
Author: Tao Zeng
Publisher: Frontiers Media SA
ISBN: 2889635546
Category :
Languages : en
Pages : 393
Book Description
Publisher: Frontiers Media SA
ISBN: 2889635546
Category :
Languages : en
Pages : 393
Book Description
Cognitive Informatics and Soft Computing
Author: Pradeep Kumar Mallick
Publisher: Springer Nature
ISBN: 9811610568
Category : Technology & Engineering
Languages : en
Pages : 961
Book Description
This book presents best selected research papers presented at the 3rd International Conference on Cognitive Informatics and Soft Computing (CISC 2020), held at Balasore College of Engineering & Technology, Balasore, Odisha, India, from 12 to 13 December 2020. It highlights, in particular, innovative research in the fields of cognitive informatics, cognitive computing, computational intelligence, advanced computing, and hybrid intelligent models and applications. New algorithms and methods in a variety of fields are presented, together with solution-based approaches. The topics addressed include various theoretical aspects and applications of computer science, artificial intelligence, cybernetics, automation control theory, and software engineering.
Publisher: Springer Nature
ISBN: 9811610568
Category : Technology & Engineering
Languages : en
Pages : 961
Book Description
This book presents best selected research papers presented at the 3rd International Conference on Cognitive Informatics and Soft Computing (CISC 2020), held at Balasore College of Engineering & Technology, Balasore, Odisha, India, from 12 to 13 December 2020. It highlights, in particular, innovative research in the fields of cognitive informatics, cognitive computing, computational intelligence, advanced computing, and hybrid intelligent models and applications. New algorithms and methods in a variety of fields are presented, together with solution-based approaches. The topics addressed include various theoretical aspects and applications of computer science, artificial intelligence, cybernetics, automation control theory, and software engineering.
Chinese Power and Artificial Intelligence
Author: William C. Hannas
Publisher: Taylor & Francis
ISBN: 1000619400
Category : History
Languages : en
Pages : 382
Book Description
This book provides a comprehensive account of Chinese AI in its various facets, based on primary Chinese-language sources. China’s rise as an AI power is an event of importance to the world and a potential challenge to liberal democracies. Filling a gap in the literature, this volume is fully documented, data-driven, and presented in a scholarly format suitable for citation and for supporting downstream research, while also remaining accessible to laypersons. It brings together 15 recognized international experts to present a full treatment of Chinese artificial intelligence. The volume contains chapters on state, commercial, and foreign sources of China’s AI power; China’s AI talent, scholarship, and global standing; the impact of AI on China’s development of cutting-edge disciplines; China’s use of AI in military, cyber, and surveillance applications; AI safety, threat mitigation, and the technology’s likely trajectory. The book ends with recommendations drawn from the authors’ interactions with policymakers and specialists worldwide, aimed at encouraging AI’s healthy development in China and preparing the rest of the world to engage with it. This book will be of much interest to students of Chinese politics, science and technology studies, security studies and international relations.
Publisher: Taylor & Francis
ISBN: 1000619400
Category : History
Languages : en
Pages : 382
Book Description
This book provides a comprehensive account of Chinese AI in its various facets, based on primary Chinese-language sources. China’s rise as an AI power is an event of importance to the world and a potential challenge to liberal democracies. Filling a gap in the literature, this volume is fully documented, data-driven, and presented in a scholarly format suitable for citation and for supporting downstream research, while also remaining accessible to laypersons. It brings together 15 recognized international experts to present a full treatment of Chinese artificial intelligence. The volume contains chapters on state, commercial, and foreign sources of China’s AI power; China’s AI talent, scholarship, and global standing; the impact of AI on China’s development of cutting-edge disciplines; China’s use of AI in military, cyber, and surveillance applications; AI safety, threat mitigation, and the technology’s likely trajectory. The book ends with recommendations drawn from the authors’ interactions with policymakers and specialists worldwide, aimed at encouraging AI’s healthy development in China and preparing the rest of the world to engage with it. This book will be of much interest to students of Chinese politics, science and technology studies, security studies and international relations.
Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine
Author: Ehsan Nazemalhosseini-Mojarad
Publisher: Frontiers Media SA
ISBN: 2832530389
Category : Science
Languages : en
Pages : 433
Book Description
Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.
Publisher: Frontiers Media SA
ISBN: 2832530389
Category : Science
Languages : en
Pages : 433
Book Description
Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.
Precision Medicine and Artificial Intelligence
Author: Michael Mahler
Publisher: Academic Press
ISBN: 032385432X
Category : Science
Languages : en
Pages : 302
Book Description
Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine
Publisher: Academic Press
ISBN: 032385432X
Category : Science
Languages : en
Pages : 302
Book Description
Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Applied Predictive Modeling
Author: Max Kuhn
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595
Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595
Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
DNA Methylation
Author: J. Jost
Publisher: Birkhäuser
ISBN: 3034891180
Category : Science
Languages : en
Pages : 581
Book Description
The occurrence of 5-methylcytosine in DNA was first described in 1948 by Hotchkiss (see first chapter). Recognition of its possible physiologi cal role in eucaryotes was first suggested in 1964 by Srinivasan and Borek (see first chapter). Since then work in a great many laboratories has established both the ubiquity of 5-methylcytosine and the catholicity of its possible regulatory function. The explosive increase in the number of publications dealing with DNA methylation attests to its importance and makes it impossible to write a comprehensive coverage of the literature within the scope of a general review. Since the publication of the 3 most recent books dealing with the subject (DNA methylation by Razin A. , Cedar H. and Riggs A. D. , 1984 Springer Verlag; Molecular Biology of DNA methylation by Adams R. L. P. and Burdon R. H. , 1985 Springer Verlag; Nucleic Acids Methylation, UCLA Symposium suppl. 128, 1989) considerable progress both in the techniques and results has been made in the field of DNA methylation. Thus we asked several authors to write chapters dealing with aspects of DNA methyla tion in which they are experts. This book should be most useful for students, teachers as well as researchers in the field of differentiation and gene regulation. We are most grateful to all our colleagues who were willing to spend much time and effort on the publication of this book. We also want to express our gratitude to Yan Chim Jost for her help in preparing this book.
Publisher: Birkhäuser
ISBN: 3034891180
Category : Science
Languages : en
Pages : 581
Book Description
The occurrence of 5-methylcytosine in DNA was first described in 1948 by Hotchkiss (see first chapter). Recognition of its possible physiologi cal role in eucaryotes was first suggested in 1964 by Srinivasan and Borek (see first chapter). Since then work in a great many laboratories has established both the ubiquity of 5-methylcytosine and the catholicity of its possible regulatory function. The explosive increase in the number of publications dealing with DNA methylation attests to its importance and makes it impossible to write a comprehensive coverage of the literature within the scope of a general review. Since the publication of the 3 most recent books dealing with the subject (DNA methylation by Razin A. , Cedar H. and Riggs A. D. , 1984 Springer Verlag; Molecular Biology of DNA methylation by Adams R. L. P. and Burdon R. H. , 1985 Springer Verlag; Nucleic Acids Methylation, UCLA Symposium suppl. 128, 1989) considerable progress both in the techniques and results has been made in the field of DNA methylation. Thus we asked several authors to write chapters dealing with aspects of DNA methyla tion in which they are experts. This book should be most useful for students, teachers as well as researchers in the field of differentiation and gene regulation. We are most grateful to all our colleagues who were willing to spend much time and effort on the publication of this book. We also want to express our gratitude to Yan Chim Jost for her help in preparing this book.
Artificial Intelligence and Machine Learning for Healthcare
Author: Chee-Peng Lim
Publisher: Springer Nature
ISBN: 3031111540
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
Artificial intelligence (AI) and machine learning (ML) have transformed many standard and conventional methods in undertaking health and well-being issues of humans. AL/ML-based systems and tools play a critical role in this digital and big data era to address a variety of medical and healthcare problems, improving treatments and quality of care for patients. This edition on AI and ML for healthcare consists of two volumes. The first presents selected AI and ML studies on medical imaging and healthcare data analytics, while the second unveils emerging methodologies and trends in AI and ML for delivering better medical treatments and healthcare services in the future. In this first volume, progresses in AI and ML technologies for medical image, video, and signal processing as well as health information and data analytics are presented. These selected studies offer readers theoretical and practical knowledge and ideas pertaining to recent advances in AI and ML for effective and efficient image and data analytics, leading to state-of-the-art AI and ML technologies for advancing the healthcare sector.
Publisher: Springer Nature
ISBN: 3031111540
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
Artificial intelligence (AI) and machine learning (ML) have transformed many standard and conventional methods in undertaking health and well-being issues of humans. AL/ML-based systems and tools play a critical role in this digital and big data era to address a variety of medical and healthcare problems, improving treatments and quality of care for patients. This edition on AI and ML for healthcare consists of two volumes. The first presents selected AI and ML studies on medical imaging and healthcare data analytics, while the second unveils emerging methodologies and trends in AI and ML for delivering better medical treatments and healthcare services in the future. In this first volume, progresses in AI and ML technologies for medical image, video, and signal processing as well as health information and data analytics are presented. These selected studies offer readers theoretical and practical knowledge and ideas pertaining to recent advances in AI and ML for effective and efficient image and data analytics, leading to state-of-the-art AI and ML technologies for advancing the healthcare sector.
Deep Learning in Genetics and Genomics
Author: Khalid Raza
Publisher: Elsevier
ISBN: 0443275246
Category : Science
Languages : en
Pages : 470
Book Description
Deep Learning in Genetics and Genomics: Vol. 2 (Advanced Applications) delves into the Deep Learning methods and their applications in various fields of studies, including genetics and genomics, bioinformatics, health informatics and medical informatics generating the momentum of today's developments in the field. In 25 chapters this title covers advanced applications in the field which includes deep learning in predictive medicines), analysis of genetic and clinical features, transcriptomics and gene expression patterns analysis, clinical decision support in genetic diagnostics, deep learning in personalised genomics and gene editing, and understanding genetic discoveries through Explainable AI. Further, it also covers various deep learning-based case studies, making this book a unique resource for wider, deeper, and in-depth coverage of recent advancement in deep learning based approaches. This volume is not only a valuable resource for health educators, clinicians, and healthcare professionals but also to graduate students of genetics, genomics, biology, biostatistics, biomedical sciences, bioinformatics, and interdisciplinary sciences. - Embraces the potential that deep learning holds for understanding genome biology - Encourages further advances in this area, extending to all aspects of genomics research - Provides Deep Learning algorithms in genetic and genomic research
Publisher: Elsevier
ISBN: 0443275246
Category : Science
Languages : en
Pages : 470
Book Description
Deep Learning in Genetics and Genomics: Vol. 2 (Advanced Applications) delves into the Deep Learning methods and their applications in various fields of studies, including genetics and genomics, bioinformatics, health informatics and medical informatics generating the momentum of today's developments in the field. In 25 chapters this title covers advanced applications in the field which includes deep learning in predictive medicines), analysis of genetic and clinical features, transcriptomics and gene expression patterns analysis, clinical decision support in genetic diagnostics, deep learning in personalised genomics and gene editing, and understanding genetic discoveries through Explainable AI. Further, it also covers various deep learning-based case studies, making this book a unique resource for wider, deeper, and in-depth coverage of recent advancement in deep learning based approaches. This volume is not only a valuable resource for health educators, clinicians, and healthcare professionals but also to graduate students of genetics, genomics, biology, biostatistics, biomedical sciences, bioinformatics, and interdisciplinary sciences. - Embraces the potential that deep learning holds for understanding genome biology - Encourages further advances in this area, extending to all aspects of genomics research - Provides Deep Learning algorithms in genetic and genomic research