Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers

Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers PDF Author: Clinton Taubert
Publisher:
ISBN:
Category : Adhesives
Languages : en
Pages : 0

Get Book Here

Book Description
Electrically conductive adhesives (ECAs) have recently become a critical technological area in component development behind solar cell packaging for die attachment, solderless interconnects, and heat dissipation. The standard example of an ECA employs the use of conductive fillers within a polymeric matrix or host to render the final composite conductive. Electrical conductivity of an ECA is governed by percolation theory, wherein the necessary fillers that host electrons transfer, via physical connection or tunneling, must reach some critical volume fraction to accommodate probable conductive pathways that would be large enough to be considered isotropic [1,2]. Many fillers exist for use in this role, but commonly silver is chosen for its high electrical and thermal conductivities [3]. However, silver (especially micro- or nano-structured) remains an expensive commodity, and typical volume fraction loadings in ECA can approach >30%. This is necessary as the theoretical critical volume fraction required for monodisperse spheres in a randomly oriented isotropic system is ~16% [4]. Such excessive filler loading not only invalidates economic feasibility, but also deteriorates mechanical properties inherent for the host polymer. To mitigate the critical percolation threshold (pc) for volume fraction loading of a filler, combative methods are articulated herein. One approach is to use low-dimensional, high-aspect ratio fillers, such as graphene and carbon nanotubes (CNTs), which have been shown to lower pc [5,6]. Typically, such fillers are more expensive than silver; however, given the low-loading implied to achieve a percolated network, this approach could improve the economic feasibility as an added filler for reducing total filler loading required [7]. In this work, commercial CNTs are employed as a high-aspect ratio filler for the reduction of silver filler loading in an ECA system. Graphene nanoplatelets are also synthesized and used to demonstrate a route for creating tailored high-aspect ratio, low-dimensional fillers which are effective at generating a percolated network at relatively low loading. Utilizing a pre-percolated CNT system, a hybrid silver/CNT system was then generated to achieve enhanced conductivity at lower total loading over pure silver systems, which exhibited a conductivity of 54 S/cm at 12 vol.% loading with a CNT loading of only 8 wt.%. 1. Aharoni, S.M. Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix J. Appl. Phys. 43, 2463-2465, (1972) 2 .McLachlan, D.S. et al. Electrical Resistivity of Composites. J. Am. Ceram. Soc. 73, 2187-2203 (1990) 3. Morris, J. E. Electrically Conductive Adhesives, A. Comprehensive Review. 37-77 (1999) 4. Bueche, F. Electrical resistivity of Conducting Particles in an Insulating Matrix. J. Appl. Phys. 43, 4837-8 (1972) 5. Lin, X.; Lin, F., Proceedings of High Density Microsystem Design an Packaging, Conference, Shanhai, China. 382-384 (2004) 6. Marcq, F. et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectron. Reliab. 51(7), 1230-1234 (2011) 7. Lyons, A. M. Electrically conductive adhesives, Effect of particle composition and size distribution. Polym. Eng. Sci. 31(6), 445-450, (1991)

Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers

Low Percolation Threshold in Electrically Conductive Adhesives Using Complex Dimensional Fillers PDF Author: Clinton Taubert
Publisher:
ISBN:
Category : Adhesives
Languages : en
Pages : 0

Get Book Here

Book Description
Electrically conductive adhesives (ECAs) have recently become a critical technological area in component development behind solar cell packaging for die attachment, solderless interconnects, and heat dissipation. The standard example of an ECA employs the use of conductive fillers within a polymeric matrix or host to render the final composite conductive. Electrical conductivity of an ECA is governed by percolation theory, wherein the necessary fillers that host electrons transfer, via physical connection or tunneling, must reach some critical volume fraction to accommodate probable conductive pathways that would be large enough to be considered isotropic [1,2]. Many fillers exist for use in this role, but commonly silver is chosen for its high electrical and thermal conductivities [3]. However, silver (especially micro- or nano-structured) remains an expensive commodity, and typical volume fraction loadings in ECA can approach >30%. This is necessary as the theoretical critical volume fraction required for monodisperse spheres in a randomly oriented isotropic system is ~16% [4]. Such excessive filler loading not only invalidates economic feasibility, but also deteriorates mechanical properties inherent for the host polymer. To mitigate the critical percolation threshold (pc) for volume fraction loading of a filler, combative methods are articulated herein. One approach is to use low-dimensional, high-aspect ratio fillers, such as graphene and carbon nanotubes (CNTs), which have been shown to lower pc [5,6]. Typically, such fillers are more expensive than silver; however, given the low-loading implied to achieve a percolated network, this approach could improve the economic feasibility as an added filler for reducing total filler loading required [7]. In this work, commercial CNTs are employed as a high-aspect ratio filler for the reduction of silver filler loading in an ECA system. Graphene nanoplatelets are also synthesized and used to demonstrate a route for creating tailored high-aspect ratio, low-dimensional fillers which are effective at generating a percolated network at relatively low loading. Utilizing a pre-percolated CNT system, a hybrid silver/CNT system was then generated to achieve enhanced conductivity at lower total loading over pure silver systems, which exhibited a conductivity of 54 S/cm at 12 vol.% loading with a CNT loading of only 8 wt.%. 1. Aharoni, S.M. Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix J. Appl. Phys. 43, 2463-2465, (1972) 2 .McLachlan, D.S. et al. Electrical Resistivity of Composites. J. Am. Ceram. Soc. 73, 2187-2203 (1990) 3. Morris, J. E. Electrically Conductive Adhesives, A. Comprehensive Review. 37-77 (1999) 4. Bueche, F. Electrical resistivity of Conducting Particles in an Insulating Matrix. J. Appl. Phys. 43, 4837-8 (1972) 5. Lin, X.; Lin, F., Proceedings of High Density Microsystem Design an Packaging, Conference, Shanhai, China. 382-384 (2004) 6. Marcq, F. et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectron. Reliab. 51(7), 1230-1234 (2011) 7. Lyons, A. M. Electrically conductive adhesives, Effect of particle composition and size distribution. Polym. Eng. Sci. 31(6), 445-450, (1991)

Electrically Conductive Adhesives

Electrically Conductive Adhesives PDF Author: Rajesh Gomatam
Publisher: CRC Press
ISBN: 9004187820
Category : Science
Languages : en
Pages : 436

Get Book Here

Book Description
With all the environmental concerns and constraints today and stricter future regulations, there is a patent need to replace materials noxious to the environment by environmentally-friendly alternatives. Electrically conductive adhesives (ECAs) are one such example. ECAs offer an excellent alternative to lead-solder interconnects for microelectroni

Evaluation of Hybrid Electrically Conductive Adhesives

Evaluation of Hybrid Electrically Conductive Adhesives PDF Author: Ephraim Trinidad
Publisher:
ISBN:
Category : Adhesion
Languages : en
Pages : 112

Get Book Here

Book Description
An electrically conductive adhesive (ECA) is a composite material acting as a conductive paste, which consists of a thermoset loaded with conductive fillers (typically silver (Ag)). Many works that focus on this line of research were successful at making strides to improve its main weakness of low electrical conductivity. Most research focused on developing better silver fillers and co-fillers, or utilizing conductive polymers to improve its electrical conductivity, however, most of these works are carried out on small scale. In this work, we aim to produce larger quantities of hybrid ECA to successfully test its properties. Industry is interested in materials with superior physical properties. As such, rheological behavior and mechanical strength were explored as it has been theoretically hinted that incorporation of exfoliated graphene within the composite could impact those factors listed in a positive manner. In the first step of this project, pre-treated sodium dodecyl sulfate (SDS)-decorated graphene's rheological properties were examined. An epoxy resin diglycidylether of bisphenol-A (DGEBA) was the main polymer used for this study: a well-known material that can behave either as a shear-thinning or shear-thickening material depending on the supplier. We showed how composites that contain graphene (Gr) had higher viscosities than ones that contained SDS decorated graphene Gr(s). Not only did we confirm that surfactant was a key factor in the decrease of viscosity, but we also report how Gr and Gr(s) had a special effect that suppresses the intrinsic shear thickening behavior of epoxy resin at weight concentrations (wt%) higher than 0.5 wt%. The results showed that Gr(s) is not only beneficial in terms of improving the conductivity of conventional ECAs, but it also acts as a solid lubricant that decreases the viscosity of the composite paste at higher weight concentrations. In the second step of the project, pre-treated SDS decorated graphene's mechanical properties were examined. In specific, its lap-shear strength (LSS) as well as the effect of residual solvent when present in our hybrid ECA system were studied in order to follow up on the thermal results obtained from a previous study. We showed that our initial suspicion was correct as the LSS did decrease for all of the solvent-assisted formulations that contained Gr(s) ranging from 66 to 84%, however, we were not able to tell whether or not that decrease was caused by lower crosslinking density. Instead, we uncovered another reason for this decrease: bubble formation during the curing step. This suspicion was confirmed qualitatively through light microscopy and quantitatively through optical profilometry, where we present an increase in surface roughness for the solvent-assisted samples. Furthermore, by using SEM, we also confirmed that this bubble formation extends throughout the entire bulk material rather than just at the interface. Lastly, we investigated whether the use of solvent to assist in the mixing process significantly improves the electrical conductivity at a lower weight loading of Ag, and compared the electrical conductivity with that of the products prepared under the same higher weight loading of Ag using a solvent-free mixing method from previous work. Thirdly, we investigated another mechanical property of our hybrid ECAs through indentation tests, where we use Hertizan equations to characterize elastic modulus. Since we learned that the addition of Ag flakes is detrimental to the mechanical strength, we focused on the difference between the elastic moduli for Gr and Gr(s) in a solvent-free environment. In the last step of this project, we explored the use of a liquid-suspended co-filler (instead of carbon filler-based materials) in Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS): a conductive polymer that is frequently in conductive thin-films. We report that by using PEDOT:PSS as a conductive co-filler into the conventional ECA with 60 wt% of Ag, we observed higher conductivity equivalent to adding an extra 20 wt% of Ag into the system. Furthermore, we report that an increase of PEDOT:PSS in the composite appears to decrease the LSS of the material by 20%.

Polymeric Materials

Polymeric Materials PDF Author: Marta Fernández-García
Publisher: MDPI
ISBN: 3038979627
Category : Technology & Engineering
Languages : en
Pages : 342

Get Book Here

Book Description
This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.

Multifunctional Epoxy Resins

Multifunctional Epoxy Resins PDF Author: Nishar Hameed
Publisher: Springer Nature
ISBN: 9811960380
Category : Technology & Engineering
Languages : en
Pages : 439

Get Book Here

Book Description
This book consolidates information about multifunctional epoxy as a frontier material, its composites, engineering and applications in a very detailed manner that encompasses the entire spectrum of up-to-date literature citations, current market trends and patents. It highlights latest experimental and theoretical studies on the atypical properties of epoxy resins such as self-healing, thermally and electrically conductivity; and its applications in devices where there is reliance on unsustainable sourced inorganic materials with comparable properties. It caters to polymer chemists, physicists and engineers who are interested in the field of next generation epoxy polymers.

Adhesives Technology for Electronic Applications

Adhesives Technology for Electronic Applications PDF Author: James J. Licari
Publisher: William Andrew
ISBN: 1437778909
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
Approx.512 pages Approx.512 pages

Electrical, Thermomechanical and Reliability Modeling of Electrically Conductive Adhesives

Electrical, Thermomechanical and Reliability Modeling of Electrically Conductive Adhesives PDF Author: Bin Su
Publisher:
ISBN:
Category : Adhesives
Languages : en
Pages :

Get Book Here

Book Description
The first part of the dissertation focuses on understanding and modeling the conduction mechanism of conductive adhesives. The contact resistance is measured between silver rods with different coating materials, and the relationship between tunnel resistivity and contact pressure is obtained based on the experimental results. Three dimensional microstructure models and resistor networks are built to simulate electrical conduction in conductive adhesives. The bulk resistivity of conductive adhesives is calculated from the computer-simulated model. The effects of the geometric properties of filler particles, such as size, shape and distribution, on electrical conductivity are studied by the method of factorial design. The second part of the dissertation evaluates the reliability and investigates the failure mechanism of conductive adhesives subjected to fatigue loading, moisture conditioning and drop impacts. In fatigue tests it is found that electrical conduction failure occurs prior to mechanical failure. The experimental data show that electrical fatigue life can be described well by the power law equation. The electrical failure of conductive adhesives in fatigue is due to the impaired epoxy-silver interfacial adhesion. Moisture uptake in conductive adhesives is measured after moisture conditioning and moisture recovery. The fatigue life of conductive adhesives is significantly shortened after moisture conditioning and moisture recovery. The moisture accelerates the debonding of silver flakes from epoxy resin, which results in a reduced fatigue life. Drop tests are performed on test vehicles with conductive adhesive joints. The electrical conduction failure happens at the same time as joint breakage. The drop failure life is found to be correlated with the strain energy caused by the drop impact, and a power law life model is proposed for drop tests. The fracture is found to be interfacial between the conductive adhesive joints and components/substrates. This research provides a comprehensive understanding of the conduction mechanism of conductive adhesives. The computer-simulated modeling approach presents a useful design tool for the conductive adhesive industry. The reliability tests and proposed failure mechanisms are helpful to prevent failure of conductive adhesives in electronic packages. Moreover, the fatigue and impact life models provide tools in product design and failure prediction of conductive adhesives.

Adhesives Technology Handbook

Adhesives Technology Handbook PDF Author: Sina Ebnesajjad
Publisher: William Andrew
ISBN: 0323356028
Category : Technology & Engineering
Languages : en
Pages : 437

Get Book Here

Book Description
Covering a wide range of industrial applications across sectors including medical applications, automotive/aerospace, packaging, electronics, and consumer goods, this book provides a complete guide to the selection of adhesives, methods of use, industrial applications, and the fundamentals of adhesion. Dr Ebnesajjad examines the selection of adhesives and adhesion methods and challenges for all major groups of substrate including plastics (thermosets and thermoplastics), elastomers, metals, ceramics and composite materials. His practical guidance covers joint design and durability, application methods, test methods and troubleshooting techniques. The science and technology of adhesion, and the principles of adhesive bonding are explained in a way that enhances the reader's understanding of the fundamentals that underpin the successful use and design of adhesives. The third edition has been updated throughout to include recent developments in the industry, with new sections covering technological advances such as nanotechnology, micro adhesion systems, and the replacement of toxic chromate technology. Provides practitioners of adhesion technology with a complete guide to bonding materials successfully Covers the whole range of commonly used substrates including plastics, metals, elastomers and ceramics, explaining basic principles and describing common materials and application techniques Introduces the range of commercially available adhesives and the selection process alongside the science and technology of adhesion

Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Adhesives
Languages : en
Pages : 288

Get Book Here

Book Description


Carbon Nanotube-Polymer Composites

Carbon Nanotube-Polymer Composites PDF Author: Dimitrios Tasis
Publisher: Royal Society of Chemistry
ISBN: 1782625828
Category : Technology & Engineering
Languages : en
Pages : 293

Get Book Here

Book Description
Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.