Author: Francis Bonahon
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403
Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Low-Dimensional Geometry
Author: Francis Bonahon
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403
Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403
Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Low Dimensional Topology
Author: Tomasz Mrowka
Publisher: American Mathematical Soc.
ISBN: 0821886967
Category : Mathematics
Languages : en
Pages : 331
Book Description
Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.
Publisher: American Mathematical Soc.
ISBN: 0821886967
Category : Mathematics
Languages : en
Pages : 331
Book Description
Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field of low-dimensional topology and to senior researchers wishing to keep up with current developments. The volume begins with notes based on a special lecture by John Milnor about the history of the topology of manifolds. It also contains notes from lectures by Cameron Gordon on the basics of three-manifold topology and surgery problems, Mikhail Khovanov on his homological invariants for knots, John Etnyre on contact geometry, Ron Fintushel and Ron Stern on constructions of exotic four-manifolds, David Gabai on the hyperbolic geometry and the ending lamination theorem, Zoltan Szabo on Heegaard Floer homology for knots and three manifolds, and John Morgan on Hamilton's and Perelman's work on Ricci flow and geometrization.
Three-dimensional Geometry and Topology
Author: William P. Thurston
Publisher: Princeton University Press
ISBN: 9780691083049
Category : Mathematics
Languages : en
Pages : 340
Book Description
Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.
Publisher: Princeton University Press
ISBN: 9780691083049
Category : Mathematics
Languages : en
Pages : 340
Book Description
Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.
High-Dimensional Data Analysis with Low-Dimensional Models
Author: John Wright
Publisher: Cambridge University Press
ISBN: 1108805558
Category : Computers
Languages : en
Pages : 718
Book Description
Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
Publisher: Cambridge University Press
ISBN: 1108805558
Category : Computers
Languages : en
Pages : 718
Book Description
Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
Sources of Hyperbolic Geometry
Author: John Stillwell
Publisher: American Mathematical Soc.
ISBN: 9780821809228
Category : Mathematics
Languages : en
Pages : 172
Book Description
Presents the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics.
Publisher: American Mathematical Soc.
ISBN: 9780821809228
Category : Mathematics
Languages : en
Pages : 172
Book Description
Presents the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics.
Holomorphic Curves in Low Dimensions
Author: Chris Wendl
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
New Ideas In Low Dimensional Topology
Author: Vassily Olegovich Manturov
Publisher: World Scientific
ISBN: 9814630632
Category : Mathematics
Languages : en
Pages : 541
Book Description
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
Publisher: World Scientific
ISBN: 9814630632
Category : Mathematics
Languages : en
Pages : 541
Book Description
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
Foundations of Hyperbolic Manifolds
Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 1475740131
Category : Mathematics
Languages : en
Pages : 761
Book Description
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
Publisher: Springer Science & Business Media
ISBN: 1475740131
Category : Mathematics
Languages : en
Pages : 761
Book Description
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
Excitons in Low-Dimensional Semiconductors
Author: Stephan Glutsch
Publisher: Springer Science & Business Media
ISBN: 3662071509
Category : Science
Languages : en
Pages : 302
Book Description
The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
Publisher: Springer Science & Business Media
ISBN: 3662071509
Category : Science
Languages : en
Pages : 302
Book Description
The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
Knots, Links, Braids and 3-Manifolds
Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821808982
Category : Mathematics
Languages : en
Pages : 250
Book Description
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.
Publisher: American Mathematical Soc.
ISBN: 0821808982
Category : Mathematics
Languages : en
Pages : 250
Book Description
This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.