Robust Control Design with MATLAB®

Robust Control Design with MATLAB® PDF Author: Da-Wei Gu
Publisher: Springer Science & Business Media
ISBN: 1846280915
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.

Robust Control Design with MATLAB®

Robust Control Design with MATLAB® PDF Author: Da-Wei Gu
Publisher: Springer Science & Business Media
ISBN: 1846280915
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.

Design of Robust Control Systems

Design of Robust Control Systems PDF Author: Marcel J. Sidi
Publisher:
ISBN: 9781575241432
Category : Robust control
Languages : en
Pages : 0

Get Book Here

Book Description
A study of the practical aspects in designing feedback control systems in which the plant may be non-minimum phase, unstable and also highly uncertain. Classical (QFT) and modern (Hoo) design approaches are explained side-by-side and are used to solve design examples.

Essentials of Robust Control

Essentials of Robust Control PDF Author: Kemin Zhou
Publisher: Pearson
ISBN: 9780135258330
Category : Automatic control
Languages : en
Pages : 0

Get Book Here

Book Description
Based upon the popular Robust and Optimal Control by Zhou, et al. (PH, 1995), this book offers a streamlined approach to robust control that reflects the most recent topics and developments in the field. It features coverage of state-of-the-art topics, including gap metric, v-gap metric, model validation, and real mu.

Multivariable Feedback Control

Multivariable Feedback Control PDF Author: Sigurd Skogestad
Publisher: John Wiley & Sons
ISBN: 047001167X
Category : Science
Languages : en
Pages : 594

Get Book Here

Book Description
Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing

Uncertainty and Feedback

Uncertainty and Feedback PDF Author: Glenn Vinnicombe
Publisher: World Scientific
ISBN: 9781860941634
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
The principal reason for using feedback is to reduce the effect of uncertainties in the description of a system which is to be controlled. H[infinity] loop-shaping is emerging as a powerful but straightforward method for designing robust feedback controllers for complex systems. However, in order to use this, or other modern design techniques, it is first necessary to generate an accurate model of the system (thus appearing to remove the reason for needing feedback in the first place). The v-gap metric is an attempt to resolve this paradox - by indicating in what sense a model should be accurate if it is to be useful for feedback design. This book develops in detail the H[infinity] loop-shaping design method, the v-gap metric and the relationship between the two, showing how they can be used together for successful feedback design.

Robust and Optimal Control

Robust and Optimal Control PDF Author: Kemin Zhou
Publisher: Pearson
ISBN: 9780134565675
Category : Control theory
Languages : en
Pages : 0

Get Book Here

Book Description
Class-tested at major institutions around the world, this work offers complete coverage of robust and H control. It features clear coverage of methodology, and provides detailed treatment of topics including Riccati equations, m theory, H loopshaping and controller reduction.

Robust Controller Design Using Normalized Coprime Factor Plant Descriptions

Robust Controller Design Using Normalized Coprime Factor Plant Descriptions PDF Author: Duncan C. McFarlane
Publisher: Springer
ISBN: 9783662169582
Category : Technology & Engineering
Languages : en
Pages : 211

Get Book Here

Book Description
This monograph concerns the design of feedback controllers for multivariable linear dynamic systems. The particular approach is to consider a coprime factor description of the plant's transfer function and to represent a family of systems by perturbing the numerator and denominator. The design of controllers to robustly stabilize such a family is posed as an H? optimization problem and some explicit solutions are obtained. Similarly, procedures for reduced order modelling and controller design are derived. Finally, the results are exploited to give a systematic loop shaping control system design procedure that is assessed on several aerospace examples. The book will be appropriate for advanced undergraduate or graduate classes requiring only a first course in state-space methods. It also gives a good introduction to multivariable control and the use of H? methods.

Robust Control in Power Systems

Robust Control in Power Systems PDF Author: Bikash Pal
Publisher: Springer Science & Business Media
ISBN: 0387259503
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book Here

Book Description
Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspective of power system control is explained through examples. The damping control design is formulated as norm optimization problem. The H_infinity, H2 norm of properly defined transfer functions are minimized in linear matrix inequalities (LMI) framework to obtain desired performance and stability robustness. Both centralized and decentralized control structures are used. Usually the transmission of feedback signal from a remote location encounters delays making it difficult to control the system. Smith predictor based approach has been successfully explored in this book as a solution to such a problem. Robust Control in Power Systems will be valuable to academicians in the areas of power, control and system theory, as well as professionals in the power industry.

Feedback Control Theory

Feedback Control Theory PDF Author: John C. Doyle
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Control Applications for Biomedical Engineering Systems

Control Applications for Biomedical Engineering Systems PDF Author: Ahmad Taher Azar
Publisher: Academic Press
ISBN: 0128174625
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
Control Applications for Biomedical Engineering Systems presents different control engineering and modeling applications in the biomedical field. It is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs. For control engineering students, it presents the application of various techniques already learned in theoretical lectures in the biomedical arena. For biomedical engineering students, it presents solutions to various problems in the field using methods commonly used by control engineers. - Points out theoretical and practical issues to biomedical control systems - Brings together solutions developed under different settings with specific attention to the validation of these tools in biomedical settings using real-life datasets and experiments - Presents significant case studies on devices and applications