An Initiation to Logarithmic Sobolev Inequalities

An Initiation to Logarithmic Sobolev Inequalities PDF Author: Gilles Royer
Publisher: American Mathematical Soc.
ISBN: 9780821844014
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.

An Initiation to Logarithmic Sobolev Inequalities

An Initiation to Logarithmic Sobolev Inequalities PDF Author: Gilles Royer
Publisher: American Mathematical Soc.
ISBN: 9780821844014
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.

Aspects of Sobolev-Type Inequalities

Aspects of Sobolev-Type Inequalities PDF Author: L. Saloff-Coste
Publisher: Cambridge University Press
ISBN: 9780521006071
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
Focusing on Poincaré, Nash and other Sobolev-type inequalities and their applications to the Laplace and heat diffusion equations on Riemannian manifolds, this text is an advanced graduate book that will also suit researchers.

Analysis and Geometry of Markov Diffusion Operators

Analysis and Geometry of Markov Diffusion Operators PDF Author: Dominique Bakry
Publisher: Springer Science & Business Media
ISBN: 3319002279
Category : Mathematics
Languages : en
Pages : 555

Get Book Here

Book Description
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Concentration Inequalities

Concentration Inequalities PDF Author: Stéphane Boucheron
Publisher: Oxford University Press
ISBN: 0199535256
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.

Inequalities: A Journey into Linear Analysis

Inequalities: A Journey into Linear Analysis PDF Author: D. J. H. Garling
Publisher: Cambridge University Press
ISBN: 1139465147
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.

Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture

Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture PDF Author: Qi S. Zhang
Publisher: CRC Press
ISBN: 1439834601
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
Focusing on Sobolev inequalities and their applications to analysis on manifolds and Ricci flow, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincare Conjecture introduces the field of analysis on Riemann manifolds and uses the tools of Sobolev imbedding and heat kernel estimates to study Ricci flows, especially with surgeries. The

Probability on Discrete Structures

Probability on Discrete Structures PDF Author: Harry Kesten
Publisher: Springer
ISBN: 9783662094457
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.

An Introduction to Markov Processes

An Introduction to Markov Processes PDF Author: Daniel W. Stroock
Publisher: Springer Science & Business Media
ISBN: 9783540234517
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory

Functional Inequalities: New Perspectives and New Applications

Functional Inequalities: New Perspectives and New Applications PDF Author: Nassif Ghoussoub
Publisher: American Mathematical Soc.
ISBN: 0821891529
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.

Group Representations in Probability and Statistics

Group Representations in Probability and Statistics PDF Author: Persi Diaconis
Publisher: Ims
ISBN:
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description