Author: R. L. Dobrushin
Publisher: Springer
ISBN: 3540370447
Category : Mathematics
Languages : en
Pages : 216
Book Description
Locally Interacting Systems and Their Application in Biology
Author: R. L. Dobrushin
Publisher: Springer
ISBN: 3540370447
Category : Mathematics
Languages : en
Pages : 216
Book Description
Publisher: Springer
ISBN: 3540370447
Category : Mathematics
Languages : en
Pages : 216
Book Description
Stochastic Modelling In Biology: Relevant Mathematical Concepts And Recent Applications
Author: Tautu Petre
Publisher: #N/A
ISBN: 9814611921
Category :
Languages : en
Pages : 456
Book Description
These proceedings focus on future prospects as well as on the present status in some important areas of applied probability and mathematical biology. Some papers have educational intentions regarding the mathematical modelling of special biological situations. The workshop was the third one in Heidelberg dealing with stochastic modelling in biology, e.g., cell biology, embryology, oncology, epidemiology and genetics.
Publisher: #N/A
ISBN: 9814611921
Category :
Languages : en
Pages : 456
Book Description
These proceedings focus on future prospects as well as on the present status in some important areas of applied probability and mathematical biology. Some papers have educational intentions regarding the mathematical modelling of special biological situations. The workshop was the third one in Heidelberg dealing with stochastic modelling in biology, e.g., cell biology, embryology, oncology, epidemiology and genetics.
Locally Interacting Systems and Their Application in Biology
Author: R. L. Dobrushin
Publisher:
ISBN: 9783662182956
Category :
Languages : en
Pages : 220
Book Description
Publisher:
ISBN: 9783662182956
Category :
Languages : en
Pages : 220
Book Description
Linear infinite-particle operators
Author: V. A. Malyshev Robert Adol_fovich Minlos
Publisher: American Mathematical Soc.
ISBN: 9780821897607
Category : Mathematics
Languages : en
Pages : 314
Book Description
The main subject of this book can be viewed in various ways. From the standpoint of functional analysis, it studies spectral properties of a certain class of linear operators; from the viewpoint of probability theory, it is concerned with the analysis of singular Markov processes; and, from the vantage point of mathematical physics, it analyzes the dynamics of equilibrium systems in quantum statistical physics and quantum field theory. Malyshev and Minlos describe two new approaches to the subject which have not been previously treated in monograph form. They also present background material which makes the book accessible and useful to researchers and graduate students working in functional analysis, probability theory, and mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 9780821897607
Category : Mathematics
Languages : en
Pages : 314
Book Description
The main subject of this book can be viewed in various ways. From the standpoint of functional analysis, it studies spectral properties of a certain class of linear operators; from the viewpoint of probability theory, it is concerned with the analysis of singular Markov processes; and, from the vantage point of mathematical physics, it analyzes the dynamics of equilibrium systems in quantum statistical physics and quantum field theory. Malyshev and Minlos describe two new approaches to the subject which have not been previously treated in monograph form. They also present background material which makes the book accessible and useful to researchers and graduate students working in functional analysis, probability theory, and mathematical physics.
Disordered Systems and Biological Organization
Author: E. Bienenstock
Publisher: Springer Science & Business Media
ISBN: 3642826571
Category : Computers
Languages : en
Pages : 407
Book Description
The NATO workshop on Disordered Systems and Biological Organization was attended, in march 1985, by 65 scientists representing a large variety of fields: Mathematics, Computer Science, Physics and Biology. It was the purpose of this interdisciplinary workshop to shed light on the conceptual connections existing between fields of research apparently as different as: automata theory, combinatorial optimization, spin glasses and modeling of biological systems, all of them concerned with the global organization of complex systems, locally interconnected. Common to many contributions to this volume is the underlying analogy between biological systems and spin glasses: they share the same properties of stability and diversity. This is the case for instance of primary sequences of biopo Iymers I ike proteins and nucleic acids considered as the result of mutation-selection processes [P. W. Anderson, 1983] or of evolving biological species [G. Weisbuch, 1984]. Some of the most striking aspects of our cognitive apparatus, involved In learning and recognttlon [J. Hopfield, 19821, can also be described in terms of stability and diversity in a suitable configuration space. These interpretations and preoccupations merge with those of theoretical biologists like S. Kauffman [1969] (genetic networks) and of mathematicians of automata theory: the dynamics of networks of automata can be interpreted in terms of organization of a system in multiple possible attractors. The present introduction outlInes the relationships between the contributions presented at the workshop and brIefly discusses each paper in its particular scientific context.
Publisher: Springer Science & Business Media
ISBN: 3642826571
Category : Computers
Languages : en
Pages : 407
Book Description
The NATO workshop on Disordered Systems and Biological Organization was attended, in march 1985, by 65 scientists representing a large variety of fields: Mathematics, Computer Science, Physics and Biology. It was the purpose of this interdisciplinary workshop to shed light on the conceptual connections existing between fields of research apparently as different as: automata theory, combinatorial optimization, spin glasses and modeling of biological systems, all of them concerned with the global organization of complex systems, locally interconnected. Common to many contributions to this volume is the underlying analogy between biological systems and spin glasses: they share the same properties of stability and diversity. This is the case for instance of primary sequences of biopo Iymers I ike proteins and nucleic acids considered as the result of mutation-selection processes [P. W. Anderson, 1983] or of evolving biological species [G. Weisbuch, 1984]. Some of the most striking aspects of our cognitive apparatus, involved In learning and recognttlon [J. Hopfield, 19821, can also be described in terms of stability and diversity in a suitable configuration space. These interpretations and preoccupations merge with those of theoretical biologists like S. Kauffman [1969] (genetic networks) and of mathematicians of automata theory: the dynamics of networks of automata can be interpreted in terms of organization of a system in multiple possible attractors. The present introduction outlInes the relationships between the contributions presented at the workshop and brIefly discusses each paper in its particular scientific context.
Modeling Biology
Author: Manfred Dietrich Laubichler
Publisher: MIT Press
ISBN: 026212291X
Category : Biology
Languages : en
Pages : 409
Book Description
Experts examine new modeling strategies for the interpretation of biological data and their integration into the conceptual framework of theoretical biology, detailing approaches that focus on morphology, development, behavior, or evolution. Abstract and conceptual models have become an indispensable tool for analyzing the flood of highly detailed empirical data generated in recent years by advanced techniques in the biosciences. Scientists are developing new modeling strategies for analyzing data, integrating results into the conceptual framework of theoretical biology, and formulating new hypotheses. In Modeling Biology, leading scholars investigate new modeling strategies in the domains of morphology, development, behavior, and evolution. The emphasis on models in the biological sciences has been accompanied by a new focus on conceptual issues and a more complex understanding of epistemological concepts. Contributors to Modeling Biology discuss models and modeling strategies from the perspectives of philosophy, history, and applied mathematics. Individual chapters discuss specific approaches to modeling in such domains as biological form, development, and behavior. Finally, the book addresses the modeling of these properties in the context of evolution, with a particular emphasis on the emerging field of evolutionary developmental biology (or evo-devo). Contributors Giorgio A. Ascoli, Chandrajit Bajaj, James P. Collins, Luciano da Fontoura Costa, Kerstin Dautenhahn, Nigel R. Franks, Scott Gilbert, Marta Ibañes Miguez, Juan Carlos Izpisúa-Belmonte, Alexander S. Klyubin, Thomas J. Koehnle, Manfred D. Laubichler, Sabina Leonelli, James A. R. Marshall, George R. McGhee Jr., Gerd B. Müller, Chrystopher L. Nehaniv, Karl J. Niklas, Lars Olsson, Eirikur Palsson, Daniel Polani, Diego Rasskin Gutman, Hans-Jörg Rheinberger, Alexei V. Samsonovich, Jeffrey C. Schank, Harry B. M. Uylings, Jaap van Pelt, Iain Werry
Publisher: MIT Press
ISBN: 026212291X
Category : Biology
Languages : en
Pages : 409
Book Description
Experts examine new modeling strategies for the interpretation of biological data and their integration into the conceptual framework of theoretical biology, detailing approaches that focus on morphology, development, behavior, or evolution. Abstract and conceptual models have become an indispensable tool for analyzing the flood of highly detailed empirical data generated in recent years by advanced techniques in the biosciences. Scientists are developing new modeling strategies for analyzing data, integrating results into the conceptual framework of theoretical biology, and formulating new hypotheses. In Modeling Biology, leading scholars investigate new modeling strategies in the domains of morphology, development, behavior, and evolution. The emphasis on models in the biological sciences has been accompanied by a new focus on conceptual issues and a more complex understanding of epistemological concepts. Contributors to Modeling Biology discuss models and modeling strategies from the perspectives of philosophy, history, and applied mathematics. Individual chapters discuss specific approaches to modeling in such domains as biological form, development, and behavior. Finally, the book addresses the modeling of these properties in the context of evolution, with a particular emphasis on the emerging field of evolutionary developmental biology (or evo-devo). Contributors Giorgio A. Ascoli, Chandrajit Bajaj, James P. Collins, Luciano da Fontoura Costa, Kerstin Dautenhahn, Nigel R. Franks, Scott Gilbert, Marta Ibañes Miguez, Juan Carlos Izpisúa-Belmonte, Alexander S. Klyubin, Thomas J. Koehnle, Manfred D. Laubichler, Sabina Leonelli, James A. R. Marshall, George R. McGhee Jr., Gerd B. Müller, Chrystopher L. Nehaniv, Karl J. Niklas, Lars Olsson, Eirikur Palsson, Daniel Polani, Diego Rasskin Gutman, Hans-Jörg Rheinberger, Alexei V. Samsonovich, Jeffrey C. Schank, Harry B. M. Uylings, Jaap van Pelt, Iain Werry
Computational Systems Biology of Pathogen-Host Interactions
Author: Saliha Durmuş
Publisher: Frontiers Media SA
ISBN: 2889198219
Category : Microbiology
Languages : en
Pages : 200
Book Description
A thorough understanding of pathogenic microorganisms and their interactions with host organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions (PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and next-generation drug targets and then to develop strategic novel solutions against drug-resistance and for personalized therapy. Traditional approaches are limited in capturing mechanisms of infection since they investigate hosts or pathogens individually. On the other hand, the systems biology approach focuses on the whole PHI system, and is more promising in capturing infection mechanisms. Here, we bring together studies on the below listed sections to present the current picture of the research on Computational Systems Biology of Pathogen-Host Interactions: - Computational Inference of PHI Networks using Omics Data - Computational Prediction of PHIs - Text Mining of PHI Data from the Literature - Mathematical Modeling and Bioinformatic Analysis of PHIs Computational Inference of PHI Networks using Omics Data Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough understanding of infection mechanisms. Great advances in molecular biology and biotechnology have allowed the production of related omics data experimentally. Many computational methods are emerging to infer molecular interaction networks of PHI systems from the corresponding omics data. Computational Prediction of PHIs Due to the lack of experimentally-found PHI data, many computational methods have been developed for the prediction of pathogen-host protein-protein interactions. Despite being emerging, currently available experimental PHI data are far from complete for a systems view of infection mechanisms through PHIs. Therefore, computational methods are the main tools to predict new PHIs. To this end, the development of new computational methods is of great interest. Text Mining of PHI Data from Literature Despite the recent development of many PHI-specific databases, most data relevant to PHIs are still buried in the biomedical literature, which demands for the use of text mining techniques to unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this aim. Therefore, the development of novel text mining methods specific for PHI data retrieval is of key importance for efficient use of the available literature. Mathematical Modeling and Bioinformatic Analysis of PHIs After the reconstruction of PHI networks experimentally and/or computationally, their mathematical modeling and detailed computational analysis is required using bioinformatics tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to analyze the increasing amount of experimentally-found and computationally-predicted PHI data.
Publisher: Frontiers Media SA
ISBN: 2889198219
Category : Microbiology
Languages : en
Pages : 200
Book Description
A thorough understanding of pathogenic microorganisms and their interactions with host organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions (PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and next-generation drug targets and then to develop strategic novel solutions against drug-resistance and for personalized therapy. Traditional approaches are limited in capturing mechanisms of infection since they investigate hosts or pathogens individually. On the other hand, the systems biology approach focuses on the whole PHI system, and is more promising in capturing infection mechanisms. Here, we bring together studies on the below listed sections to present the current picture of the research on Computational Systems Biology of Pathogen-Host Interactions: - Computational Inference of PHI Networks using Omics Data - Computational Prediction of PHIs - Text Mining of PHI Data from the Literature - Mathematical Modeling and Bioinformatic Analysis of PHIs Computational Inference of PHI Networks using Omics Data Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough understanding of infection mechanisms. Great advances in molecular biology and biotechnology have allowed the production of related omics data experimentally. Many computational methods are emerging to infer molecular interaction networks of PHI systems from the corresponding omics data. Computational Prediction of PHIs Due to the lack of experimentally-found PHI data, many computational methods have been developed for the prediction of pathogen-host protein-protein interactions. Despite being emerging, currently available experimental PHI data are far from complete for a systems view of infection mechanisms through PHIs. Therefore, computational methods are the main tools to predict new PHIs. To this end, the development of new computational methods is of great interest. Text Mining of PHI Data from Literature Despite the recent development of many PHI-specific databases, most data relevant to PHIs are still buried in the biomedical literature, which demands for the use of text mining techniques to unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this aim. Therefore, the development of novel text mining methods specific for PHI data retrieval is of key importance for efficient use of the available literature. Mathematical Modeling and Bioinformatic Analysis of PHIs After the reconstruction of PHI networks experimentally and/or computationally, their mathematical modeling and detailed computational analysis is required using bioinformatics tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to analyze the increasing amount of experimentally-found and computationally-predicted PHI data.
Works on the Foundations of Statistical Physics
Author: Nikolai Sergeevich Krylov
Publisher: Princeton University Press
ISBN: 1400854741
Category : Science
Languages : en
Pages : 313
Book Description
Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics," his doctoral thesis on "The processes of relaxation of statistical systems and the criterion of mechanical instability," and a small paper entitled "On the description of exhaustively complete experiments." Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400854741
Category : Science
Languages : en
Pages : 313
Book Description
Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics," his doctoral thesis on "The processes of relaxation of statistical systems and the criterion of mechanical instability," and a small paper entitled "On the description of exhaustively complete experiments." Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Systems Biology
Author: Edda Klipp
Publisher: John Wiley & Sons
ISBN: 3527675663
Category : Medical
Languages : en
Pages : 504
Book Description
This advanced textbook is tailored for an introductory course in Systems Biology and is well-suited for biologists as well as engineers and computer scientists. It comes with student-friendly reading lists and a companion website featuring a short exam prep version of the book and educational modeling programs. The text is written in an easily accessible style and includes numerous worked examples and study questions in each chapter. For this edition, a section on medical systems biology has been included.
Publisher: John Wiley & Sons
ISBN: 3527675663
Category : Medical
Languages : en
Pages : 504
Book Description
This advanced textbook is tailored for an introductory course in Systems Biology and is well-suited for biologists as well as engineers and computer scientists. It comes with student-friendly reading lists and a companion website featuring a short exam prep version of the book and educational modeling programs. The text is written in an easily accessible style and includes numerous worked examples and study questions in each chapter. For this edition, a section on medical systems biology has been included.
Ordinary and Partial Differential Equations
Author: W. N. Everitt
Publisher: Springer
ISBN: 354038538X
Category : Mathematics
Languages : en
Pages : 403
Book Description
Publisher: Springer
ISBN: 354038538X
Category : Mathematics
Languages : en
Pages : 403
Book Description