Local Structure Tensor for Multidimensional Signal Processing

Local Structure Tensor for Multidimensional Signal Processing PDF Author: Raúl San José Estépar
Publisher: Presses univ. de Louvain
ISBN: 2874631019
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Feature extraction and, particularly, orientation estimation of multidimensional images is of paramount importance for the Image Processing and Computer Vision communities. This dissertation focuses on this topic; specifically, we deal with the problem of local structure tensor (LST) estimation, as a mean of characterizing the local behavior of a multidimensional signal. The LST can be seen as a measure of the uncertainty of a multidimensional signal with respect to a given orientation. LST estimation can be achieved by estimating the local energy of a signal in different orientations. Then, the LST is computed as a linear combination of the local energy for each orientation with a tensor basis whose elements are calculated for each orientation. This kind of methods for the estimation of the LST are based on quadrature filters to obtain the local energy of the signal. While the LST based on quadrature filters is well defined for signals that vary locally only in one orientation (simple signals), the estimation method fails with complex signals, i.e. signals that consist of several differently-oriented simple signals. In this dissertation, an analytical study of the distortions of the tensor eigenvalues due to such complex neighborhoods is carried out. From this analytical study, two constructive methods are proposed for the estimation of the LST. The first method is based on a maximum likelihood estimation of the quadrature filter outputs. The second method uses a measure of phase consistency based on generalized quadrature filters which are formally derived from an extension of the analytic signal to multidimensional signals known as the monogenic signal. The interpretation of a multidimensional image as a function graph, i.e. a Riemannian manifold, instead of just intensity variations on the Euclidean space, has important implications that are exploited in this dissertation. Image processing tasks can then be performed by solving partial differential equations on the Riemannian manifold. In this dissertation, Riemannian geometry is used to study the evolution of fronts under mean curvature flow on a Riemannian manifold using a level set framework. For our purposes, the Riemannian manifold is defined by the induced metric of the image that is related to the LST. The Riemannian mean curvature flow is the theoretical basis for the definition of a level set segmentation method. The methods proposed in this dissertation are applied to two medical image applications. The first consists in a freehand 3D ultrasound reconstruction technique that uses the LST to perform an adaptive interpolation based on normalized convolution. Our results show that our method outperforms traditional technique for this interpolation problem. The second application uses the level set method based on Riemannian mean curvature flow to segment anatomical structures in dataset from magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US). This novel method reveals as a feasible approach to medical image segmentation.

Local Structure Tensor for Multidimensional Signal Processing

Local Structure Tensor for Multidimensional Signal Processing PDF Author: Raúl San José Estépar
Publisher: Presses univ. de Louvain
ISBN: 2874631019
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Feature extraction and, particularly, orientation estimation of multidimensional images is of paramount importance for the Image Processing and Computer Vision communities. This dissertation focuses on this topic; specifically, we deal with the problem of local structure tensor (LST) estimation, as a mean of characterizing the local behavior of a multidimensional signal. The LST can be seen as a measure of the uncertainty of a multidimensional signal with respect to a given orientation. LST estimation can be achieved by estimating the local energy of a signal in different orientations. Then, the LST is computed as a linear combination of the local energy for each orientation with a tensor basis whose elements are calculated for each orientation. This kind of methods for the estimation of the LST are based on quadrature filters to obtain the local energy of the signal. While the LST based on quadrature filters is well defined for signals that vary locally only in one orientation (simple signals), the estimation method fails with complex signals, i.e. signals that consist of several differently-oriented simple signals. In this dissertation, an analytical study of the distortions of the tensor eigenvalues due to such complex neighborhoods is carried out. From this analytical study, two constructive methods are proposed for the estimation of the LST. The first method is based on a maximum likelihood estimation of the quadrature filter outputs. The second method uses a measure of phase consistency based on generalized quadrature filters which are formally derived from an extension of the analytic signal to multidimensional signals known as the monogenic signal. The interpretation of a multidimensional image as a function graph, i.e. a Riemannian manifold, instead of just intensity variations on the Euclidean space, has important implications that are exploited in this dissertation. Image processing tasks can then be performed by solving partial differential equations on the Riemannian manifold. In this dissertation, Riemannian geometry is used to study the evolution of fronts under mean curvature flow on a Riemannian manifold using a level set framework. For our purposes, the Riemannian manifold is defined by the induced metric of the image that is related to the LST. The Riemannian mean curvature flow is the theoretical basis for the definition of a level set segmentation method. The methods proposed in this dissertation are applied to two medical image applications. The first consists in a freehand 3D ultrasound reconstruction technique that uses the LST to perform an adaptive interpolation based on normalized convolution. Our results show that our method outperforms traditional technique for this interpolation problem. The second application uses the level set method based on Riemannian mean curvature flow to segment anatomical structures in dataset from magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US). This novel method reveals as a feasible approach to medical image segmentation.

Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data

Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data PDF Author: Carl-Fredrik Westin
Publisher: Springer
ISBN: 3642543014
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
Arising from the fourth Dagstuhl conference entitled Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (2011), this book offers a broad and vivid view of current work in this emerging field. Topics covered range from applications of the analysis of tensor fields to research on their mathematical and analytical properties. Part I, Tensor Data Visualization, surveys techniques for visualization of tensors and tensor fields in engineering, discusses the current state of the art and challenges, and examines tensor invariants and glyph design, including an overview of common glyphs. The second Part, Representation and Processing of Higher-order Descriptors, describes a matrix representation of local phase, outlines mathematical morphological operations techniques, extended for use in vector images, and generalizes erosion to the space of diffusion weighted MRI. Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and analyze large and complex diffusion data such as High Angular Resolution Diffusion Imaging (HARDI) and Diffusion Kurtosis Imaging (DKI). A Part entitled Tensor Signal Processing presents new methods for processing tensor-valued data, including a novel perspective on performing voxel-wise morphometry of diffusion tensor data using kernel-based approach, explores the free-water diffusion model, and reviews proposed approaches for computing fabric tensors, emphasizing trabecular bone research. The last Part, Applications of Tensor Processing, discusses metric and curvature tensors, two of the most studied tensors in geometry processing. Also covered is a technique for diagnostic prediction of first-episode schizophrenia patients based on brain diffusion MRI data. The last chapter presents an interactive system integrating the visual analysis of diffusion MRI tractography with data from electroencephalography.

Tensors in Image Processing and Computer Vision

Tensors in Image Processing and Computer Vision PDF Author: Santiago Aja-Fernández
Publisher: Springer Science & Business Media
ISBN: 1848822995
Category : Computers
Languages : en
Pages : 468

Get Book Here

Book Description
Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.

New Developments in the Visualization and Processing of Tensor Fields

New Developments in the Visualization and Processing of Tensor Fields PDF Author: David H. Laidlaw
Publisher: Springer Science & Business Media
ISBN: 3642273432
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.

Advances in Visual Computing

Advances in Visual Computing PDF Author: George Bebis
Publisher: Springer Science & Business Media
ISBN: 3642103308
Category : Computers
Languages : en
Pages : 1157

Get Book Here

Book Description
The two volume set LNCS 5875 and LNCS 5876 constitutes the refereed proceedings of the 5th International Symposium on Visual Computing, ISVC 2009, held in Las Vegas, NV, USA, in November/December 2009. The 97 revised full papers and 63 poster papers presented together with 40 full and 15 poster papers of 7 special tracks were carefully reviewed and selected from more than 320 submissions. The papers are organized in topical sections on computer graphics; visualization; feature extraction and matching; medical imaging; motion; virtual reality; face processing; reconstruction; detection and tracking; applications; and video analysis and event recognition. The 7 additional special tracks address issues such as object recognition; visual computing for robotics; computational bioimaging; 3D mapping, modeling and surface reconstruction; deformable models: theory and applications; visualization enhanced data analysis for health applications; and optimization for vision, graphics and medical imaging: theory and applications.

Image Analysis

Image Analysis PDF Author: Joni-Kristian Kamarainen
Publisher: Springer
ISBN: 3642388868
Category : Computers
Languages : en
Pages : 746

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis.

Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields PDF Author: Joachim Weickert
Publisher: Springer Science & Business Media
ISBN: 3540312722
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.

New Insights on Multidimensional Image and Tensor Field Segmentation

New Insights on Multidimensional Image and Tensor Field Segmentation PDF Author: Rodrigo De Louis García
Publisher: Presses univ. de Louvain
ISBN: 9782874630927
Category : Computers
Languages : en
Pages : 250

Get Book Here

Book Description
Extracting knowledge from images through feature extraction is a topic of paramount importance for the Image Processing and Computer Vision communities. Within this general objective, this thesis focuses on the combination of the intensity and texture information, encoded by means of the local structure tensor (LST), for the segmentation of images. The LST is a well-stablished tool for the representation of oriented textures, and its incorporation to the segmentation process has reported to improve the segmentation performance. However, its combined use with the intensity is a complex issue that must be tackled carefully. This dissertation explores various alternatives to achieve this combination, and besides studies the problem of the balance of both sources of information. Within a level set framework, the segmentation is first performed in the tensor domain based on the definition of novel LST tensor variants that incorporate intensity information. A different approach is also considered based on a common energy minimization framework that allows the usage of both the insensity and the LST respecting their most adequate representation forms and suitable metrics. Besides, an adaptive procedure for the determination of the weighting parameters is proposed that takes into account the respective discriminant power of both features. The segmentation of tensor fields is also addressed in this dissertation. In this direction, an extension to the state-of-the-art approaches for the segmentation of tensor data has been derived which is based on the modeling of tensor data using mixtures of Gaussians. The application of this scheme can be devoted to the combined use of the intensity and texture as introduced before, as well as for the stand-alone segmentation of tensor fields. The methods proposed in this dissertation are applied to three medical image applications. The first two are performed using both the intensity and the LST in a combined approach as proposed in this thesis. Specifically, the segmentation of hand bones from radiographs is first addressed, related to the problem of the automated determination of the skeletal age in children. Next, the endocardium of the left ventricle is extractred from 3D+T cardiac MRI images. The third application is devoted to the segmentation of the corpus callosum from diffusion tensor MRI, and is thus an application of the Gaussian mixtures model for tensor field segmentation.

Computational Science – ICCS 2009

Computational Science – ICCS 2009 PDF Author: Gabrielle Allen
Publisher: Springer
ISBN: 3642019706
Category : Computers
Languages : en
Pages : 1030

Get Book Here

Book Description
“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a tri?ing investment of fact. ” Mark Twain, Life on the Mississippi The challenges in succeeding with computational science are numerous and deeply a?ect all disciplines. NSF’s 2006 Blue Ribbon Panel of Simulation-Based 1 Engineering Science (SBES) states ‘researchers and educators [agree]: com- tational and simulation engineering sciences are fundamental to the security and welfare of the United States. . . We must overcome di?culties inherent in multiscale modeling, the development of next-generation algorithms, and the design. . . of dynamic data-driven application systems. . . We must determine better ways to integrate data-intensive computing, visualization, and simulation. - portantly,wemustoverhauloureducationalsystemtofostertheinterdisciplinary study. . . The payo?sformeeting these challengesareprofound. ’The International Conference on Computational Science 2009 (ICCS 2009) explored how com- tational sciences are not only advancing the traditional hard science disciplines, but also stretching beyond, with applications in the arts, humanities, media and all aspects of research. This interdisciplinary conference drew academic and industry leaders from a variety of ?elds, including physics, astronomy, mat- matics,music,digitalmedia,biologyandengineering. Theconferencealsohosted computer and computational scientists who are designing and building the - ber infrastructure necessary for next-generation computing. Discussions focused on innovative ways to collaborate and how computational science is changing the future of research. ICCS 2009: ‘Compute. Discover. Innovate. ’ was hosted by the Center for Computation and Technology at Louisiana State University in Baton Rouge.

Multi-Image Analysis

Multi-Image Analysis PDF Author: Reinhard Klette
Publisher: Springer
ISBN: 354045134X
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-proceedings of the 10th International Workshop on Theoretical Foundations of Computer Vision, held at Dagstuhl Castle, Germany, in March 2000. The 20 revised full papers presented have been through two rounds of reviewing, selection, and revision and give a representative assessment of the foundational issues in multiple-image processing. The papers are organized in topical sections on 3D data acquisition and sensor design, multi-image analysis, data fusion in 3D scene description, and applied 3D vision and virtual reality.