Local Oscillator Generation Using High Conversion Gain Frequency Tripler and Low Phase Noise Voltage Controlled Oscillator

Local Oscillator Generation Using High Conversion Gain Frequency Tripler and Low Phase Noise Voltage Controlled Oscillator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


High-Frequency Low-Power Local Oscillator Generation

High-Frequency Low-Power Local Oscillator Generation PDF Author: Yannan Miao
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659232190
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
With rapid development in the area of RF and wireless communication, the interest in frequency synthesizers has grown rapidly in the last few years. Frequency synthesizer is used for local oscillator (LO) generation. In this thesis, our aim is to explore high-frequency low-power LO generation in CMOS technology. We focus on three most power-hungry blocks in a frequency synthesizer, which dominate the total power consumption due to their high-frequency operation, namely voltage-controlled oscillator (VCO), frequency divider and frequency multiplier, as these circuits are the bottleneck to achieve the above mentioned aim. Through reducing their power consumption, the total power consumption of the frequency synthesizer can be reduced significantly. Moreover, the phase noise of the frequency synthesizer is significantly dependent on the VCO and the frequency multiplier. These novel ideas are implemented in a 24-GHz frequency synthesizer. These designs should help those IC designers, who may be considering improving the performance of transceiver.

Low-noise Local Oscillator Design Techniques Using a DLL-based Frequency Multiplier for Wireless Applications

Low-noise Local Oscillator Design Techniques Using a DLL-based Frequency Multiplier for Wireless Applications PDF Author: George Chien
Publisher:
ISBN:
Category :
Languages : en
Pages : 388

Get Book Here

Book Description


The Designer's Guide to High-Purity Oscillators

The Designer's Guide to High-Purity Oscillators PDF Author: Emad Eldin Hegazi
Publisher: Springer Science & Business Media
ISBN: 0387233652
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.

mm-Wave Silicon Technology

mm-Wave Silicon Technology PDF Author: Ali M. Niknejad
Publisher: Springer Science & Business Media
ISBN: 0387765611
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
This book compiles and presents the research results from the past five years in mm-wave Silicon circuits. This area has received a great deal of interest from the research community including several university and research groups. The book covers device modeling, circuit building blocks, phased array systems, and antennas and packaging. It focuses on the techniques that uniquely take advantage of the scale and integration offered by silicon based technologies.

Microwave Circuit Design Using Linear and Nonlinear Techniques

Microwave Circuit Design Using Linear and Nonlinear Techniques PDF Author: George D. Vendelin
Publisher: John Wiley & Sons
ISBN: 0471715824
Category : Technology & Engineering
Languages : en
Pages : 1080

Get Book Here

Book Description
The ultimate handbook on microwave circuit design with CAD. Full of tips and insights from seasoned industry veterans, Microwave Circuit Design offers practical, proven advice on improving the design quality of microwave passive and active circuits-while cutting costs and time. Covering all levels of microwave circuit design from the elementary to the very advanced, the book systematically presents computer-aided methods for linear and nonlinear designs used in the design and manufacture of microwave amplifiers, oscillators, and mixers. Using the newest CAD tools, the book shows how to design transistor and diode circuits, and also details CAD's usefulness in microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) technology. Applications of nonlinear SPICE programs, now available for microwave CAD, are described. State-of-the-art coverage includes microwave transistors (HEMTs, MODFETs, MESFETs, HBTs, and more), high-power amplifier design, oscillator design including feedback topologies, phase noise and examples, and more. The techniques presented are illustrated with several MMIC designs, including a wideband amplifier, a low-noise amplifier, and an MMIC mixer. This unique, one-stop handbook also features a major case study of an actual anticollision radar transceiver, which is compared in detail against CAD predictions; examples of actual circuit designs with photographs of completed circuits; and tables of design formulae.

Phase Noise Suppression Techniques for 5-6GHZ Oscillator Design

Phase Noise Suppression Techniques for 5-6GHZ Oscillator Design PDF Author: Yang Zhang
Publisher:
ISBN:
Category : Electronic noise
Languages : en
Pages : 56

Get Book Here

Book Description


Low-Noise Low-Power Design for Phase-Locked Loops

Low-Noise Low-Power Design for Phase-Locked Loops PDF Author: Feng Zhao
Publisher: Springer
ISBN: 3319122002
Category : Technology & Engineering
Languages : en
Pages : 106

Get Book Here

Book Description
This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.

Low-power Low-phase-noise Voltage-controlled Oscillator Design

Low-power Low-phase-noise Voltage-controlled Oscillator Design PDF Author: Yue Yu
Publisher:
ISBN:
Category : Oscillators, Electric
Languages : en
Pages : 230

Get Book Here

Book Description
Abstract: The design of voltage-controlled Oscillators nowadays is all about being capable of operating at higher clock frequencies for the purpose of higher data rate, consuming less power for the purpose of longer battery life, and having better phase noise performance for the purpose of higher quality of wireless service and more efficient use of the available frequency spectrum since most of the wireless and mobile terminals that these VCOs work in are required to be able to operate in multiple RF standards to serve new generations of standards while being backward compatible with existing ones, leading to a demand for multi-standard multi-band radio operation that deals with high frequency RF signals that undergo different modulation schemes of different standards in different channels over a wide range of frequency band. A top-down system design from the PLL to the VCO is carried out to determine the specifications for a fully integrated dual-band voltage-controlled oscillator (VCO) designed for a Zero-IF WiMAX/WLAN receiver in a O.18tm CMOS technology with 1.8V supply voltage. A VCO employing a differential cross-coupled inductance-capacitance (LC) tank architecture is proposed to cover twice the desired frequency bands for WiMAX and WLAN standards in order to avoid load pulling between VCO frequency and incoming RF frequency. The switching between two bands is implemented by using two binary-weighted capacitor arrays while switching inside each sub-band is implemented by different digital control signal combinations for the binary-weighted capacitances. A phase noise of -120.7dB/Hz at 1MHz offset frequency is demonstrated for an oscillation frequency of 4.84GHz. The average power consumption of this VCO is 8.1mW. This VCO is developed as an IP (Intellectual Property) to be used in a fully integrated CMOS multi-standard WiMAX/WLAN radio allowing seamless roaming of handheld mobile devices between hotspots in future Wireless Metropolitan Area Network (WMAN). To compare the performance of ring oscillators to that of LC tank oscillators, the designs of two three-stage multiple-pass voltage-controlled ring oscillators with dual-delay paths are demonstrated where the differential delay cell utilizes both the primary loop delay and the negative skewed delay to increase the frequency of oscillation substantially and retain or even increase tuning range. Their phase noise performance is also improved by switching in and out the transistors periodically. In design I, the covered frequency range is from 0.74 GHz to 1.96 GHz, which translates to a tuning range of 90 % A phase noise of -104.995dBc/Hz is demonstrated for an oscillation frequency of 1.8535 GHz. Each stage draws a current of 4.963mA on average from a 1.8V power supply, resulting in a power consumption of 26.8mW. In design II, the covered frequency range is from 1.0478 GHz to 2.0022 GHz, which translates to a tuning range of 63%. The frequency-voltage curve is almost a perfect linear curve for V between OV and 0.9V. A phase noise of -110.O45dBc/Hz is demonstrated for an oscillation frequency of 2.00216 GHz. Each stage draws a current of 10.179mA on average from a 1.8V power supply, resulting in a power consumption of 55mW.

Multiphase Reference Signal Generation Using Coupled Oscillators

Multiphase Reference Signal Generation Using Coupled Oscillators PDF Author: Mohammad Hekmat
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 132

Get Book Here

Book Description
The continuing trend toward higher frequencies of operation poses formidable challenges in the design of multiphase reference signals at mm-wave frequencies and beyond. Conventional multiphase reference generation techniques face serious implementation or performance challenges when scaled to microwave and mm-wave frequencies. Ring oscillators suffer from poor phase noise, and hence fail to fulfill the stringent requirements of most wireless applications. Generating multiphase signals by dividing the output of an oscillator operating at multiples of the intended frequency of operation is impractical when frequencies approach the mm-wave range. Cross-coupled LC oscillators have been explored as a promising alternative for multiphase and, in particular, quadrature generation. However, the frequency ambiguity that results from multiple modes of operation, as well as the severe phase noise degradation due to their inherent off-resonance operation, has inhibited their utilization in practice. This work introduces a new topology for coupled oscillators that solves the frequency ambiguity issue and mitigates phase noise degradation in coupled oscillators by employing an array of LC oscillators that are coupled in a bidirectional fashion. The proposed bidirectional coupling enforces operation at the resonance frequency of the LC tanks of the oscillator in the loop, a property that proves to be key in solving both the aforementioned issues. A quadrature frequency doubling topology using bidirectionally-coupled oscillators is also presented. The proposed approach relaxes the linearity requirements on the mixers employed in the circuit, thus allowing the frequency doubler to use highly nonlinear mixers. An experimental prototype integrated in a 90-nm CMOS technology provides output phases in increments of 45 degrees and achieves a phase noise of −101 dBc/Hz at 1- MHz offset from a 19.6-GHz carrier. The quadrature 40-GHz signal generated on chip drives a single-sideband transmitter that achieves a sideband suppression of better than 45 dB.