Local Fourier Analysis for Saddle-point Problems

Local Fourier Analysis for Saddle-point Problems PDF Author: Yunhui He
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The numerical solution of saddle-point problems has attracted considerable interest in recent years, due to their indefiniteness and often poor spectral properties that make efficient solution difficult. While much research already exists, developing efficient algorithms remains challenging. Researchers have applied finite-difference, finite element, and finite-volume approaches successfully to discretize saddle-point problems, and block preconditioners and monolithic multigrid methods have been proposed for the resulting systems. However, there is still much to understand. Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic fields. Often, the discretization and linearization of MHD leads to a saddle-point system. We present vector-potential formulations of MHD and a theoretical analysis of the existence and uniqueness of solutions of both the continuum two-dimensional resistive MHD model and its discretization. Local Fourier analysis (LFA) is a commonly used tool for the analysis of multigrid and other multilevel algorithms. We first adapt LFA to analyse the properties of multigrid methods for both finite-difference and finite-element discretizations of the Stokes equations, leading to saddle-point systems. Monolithic multigrid methods, based on distributive, Braess-Sarazin, and Uzawa relaxation are discussed. From this LFA, optimal parameters are proposed for these multigrid solvers. Numerical experiments are presented to validate our theoretical results. A modified two-level LFA is proposed for high-order finite-element methods for the Lapalce problem, curing the failure of classical LFA smoothing analysis in this setting and providing a reliable way to estimate actual multigrid performance. Finally, we extend LFA to analyze the balancing domain decomposition by constraints (BDDC) algorithm, using a new choice of basis for the space of Fourier harmonics that greatly simplifies the application of LFA. Improved performance is obtained for some two- and three-level variants.

Local Fourier Analysis for Saddle-point Problems

Local Fourier Analysis for Saddle-point Problems PDF Author: Yunhui He
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The numerical solution of saddle-point problems has attracted considerable interest in recent years, due to their indefiniteness and often poor spectral properties that make efficient solution difficult. While much research already exists, developing efficient algorithms remains challenging. Researchers have applied finite-difference, finite element, and finite-volume approaches successfully to discretize saddle-point problems, and block preconditioners and monolithic multigrid methods have been proposed for the resulting systems. However, there is still much to understand. Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic fields. Often, the discretization and linearization of MHD leads to a saddle-point system. We present vector-potential formulations of MHD and a theoretical analysis of the existence and uniqueness of solutions of both the continuum two-dimensional resistive MHD model and its discretization. Local Fourier analysis (LFA) is a commonly used tool for the analysis of multigrid and other multilevel algorithms. We first adapt LFA to analyse the properties of multigrid methods for both finite-difference and finite-element discretizations of the Stokes equations, leading to saddle-point systems. Monolithic multigrid methods, based on distributive, Braess-Sarazin, and Uzawa relaxation are discussed. From this LFA, optimal parameters are proposed for these multigrid solvers. Numerical experiments are presented to validate our theoretical results. A modified two-level LFA is proposed for high-order finite-element methods for the Lapalce problem, curing the failure of classical LFA smoothing analysis in this setting and providing a reliable way to estimate actual multigrid performance. Finally, we extend LFA to analyze the balancing domain decomposition by constraints (BDDC) algorithm, using a new choice of basis for the space of Fourier harmonics that greatly simplifies the application of LFA. Improved performance is obtained for some two- and three-level variants.

Microlocal Analysis and Complex Fourier Analysis

Microlocal Analysis and Complex Fourier Analysis PDF Author: Takahiro Kawai
Publisher: World Scientific
ISBN: 9812381619
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
This book is a collection of original papers on microlocal analysis, Fourier analysis in the complex domain, generalized functions and related topics. Most of the papers originate from the talks given at the conference ?Prospects of Generalized Functions? (in November, 2001 at RIMS, Kyoto). Reflecting the fact that the papers, except M Morimoto's one, are dedicated to Mitsuo Morimoto, the subjects considered in this book are interdisciplinary, just as Morimoto's works are. The historical backgrounds of the subjects are also discussed in depth in some contributions. Thus, this book should be valuable not only to the specialists in the fields, but also to those who are interested in the history of modern mathematics such as distributions and hyperfunctions.

Fourier Analysis and Boundary Value Problems

Fourier Analysis and Boundary Value Problems PDF Author: Enrique A. Gonzalez-Velasco
Publisher: Elsevier
ISBN: 0080531938
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. Topics are covered from a historical perspective with biographical information on key contributors to the field The text contains more than 500 exercises Includes practical applications of the equations to problems in both engineering and physics

Fourier Analysis on Local Fields. (MN-15)

Fourier Analysis on Local Fields. (MN-15) PDF Author: M. H. Taibleson
Publisher: Princeton University Press
ISBN: 1400871336
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
This book presents a development of the basic facts about harmonic analysis on local fields and the n-dimensional vector spaces over these fields. It focuses almost exclusively on the analogy between the local field and Euclidean cases, with respect to the form of statements, the manner of proof, and the variety of applications. The force of the analogy between the local field and Euclidean cases rests in the relationship of the field structures that underlie the respective cases. A complete classification of locally compact, non-discrete fields gives us two examples of connected fields (real and complex numbers); the rest are local fields (p-adic numbers, p-series fields, and their algebraic extensions). The local fields are studied in an effort to extend knowledge of the reals and complexes as locally compact fields. The author's central aim has been to present the basic facts of Fourier analysis on local fields in an accessible form and in the same spirit as in Zygmund's Trigonometric Series (Cambridge, 1968) and in Introduction to Fourier Analysis on Euclidean Spaces by Stein and Weiss (1971). Originally published in 1975. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Fourier Analysis and Partial Differential Equations

Fourier Analysis and Partial Differential Equations PDF Author: Jose Garcia-Cuerva
Publisher: CRC Press
ISBN: 135108058X
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
Contains easy access to four actual and active areas of research in Fourier Analysis and PDE Covers a wide spectrum of topics in present research Provides a complete picture of state-of-the-art methods in the field Contains 200 tables allowing the reader speedy access to precise data

Nonlinear Functional Analysis and its Applications

Nonlinear Functional Analysis and its Applications PDF Author: E. Zeidler
Publisher: Springer Science & Business Media
ISBN: 146125020X
Category : Science
Languages : en
Pages : 675

Get Book Here

Book Description
As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.

Numerical and Symbolic Scientific Computing

Numerical and Symbolic Scientific Computing PDF Author: Ulrich Langer
Publisher: Springer Science & Business Media
ISBN: 3709107946
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from applied and computational geometry to computer algebra methods used for total variation energy minimization.

Analytic Combinatorics

Analytic Combinatorics PDF Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825

Get Book Here

Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

The Three-field Formulation for Elliptic Equations

The Three-field Formulation for Elliptic Equations PDF Author: Gerd Rapin
Publisher: Cuvillier Verlag
ISBN: 3898739635
Category :
Languages : en
Pages : 191

Get Book Here

Book Description


Domain Decomposition Methods in Science and Engineering XVIII

Domain Decomposition Methods in Science and Engineering XVIII PDF Author: Michel Bercovier
Publisher: Springer Science & Business Media
ISBN: 364202677X
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
th This volume contains a selection of 41 refereed papers presented at the 18 International Conference of Domain Decomposition Methods hosted by the School of ComputerScience and Engineering(CSE) of the Hebrew Universityof Jerusalem, Israel, January 12–17, 2008. 1 Background of the Conference Series The International Conference on Domain Decomposition Methods has been held in twelve countries throughout Asia, Europe, the Middle East, and North America, beginning in Paris in 1987. Originally held annually, it is now spaced at roughly 18-month intervals. A complete list of past meetings appears below. The principal technical content of the conference has always been mathematical, but the principal motivation has been to make ef cient use of distributed memory computers for complex applications arising in science and engineering. The leading 15 such computers, at the “petascale” characterized by 10 oating point operations per second of processing power and as many Bytes of application-addressablem- ory, now marshal more than 200,000 independentprocessor cores, and systems with many millions of cores are expected soon. There is essentially no alternative to - main decomposition as a stratagem for parallelization at such scales. Contributions from mathematicians, computerscientists, engineers,and scientists are together n- essary in addressing the challenge of scale, and all are important to this conference.