Author: Walter Peschka
Publisher: Springer Science & Business Media
ISBN: 3709191262
Category : Science
Languages : en
Pages : 308
Book Description
to the German Edition This book is based on published material, oral presentations and lecture courses, as well as the author's personal research in the specific field of space technology and in the general areas of energy storage and transfer, and cryogenics. The science and technology of liquid hydrogen-once essential prere quisites for the rapid development of space technology-are now also proving to be more and more important for the energy production of the future. Hydrogen as an energy carrier can generally mediate the existing disparity between nuclear energy and regenerative energy, both of which are indispensable for the future. Hydrogen, as a secondary energy carrier, can be produced from these primary energy sources with minimal environmental impact and without the detrimental, long-term pollution effects of current fossil fuel technology. Hydrogen, therefore, represents the ultimate in energy technology. The initial, large-scale application of hydrogen as a secondary energy was as a high-energy rocket propellant. The procedures for its large scale liquefaction, storage and employment were generally developed in the U.S. Currently in Europe similar activities are being conducted only in France. The effort in West Germany involves testing hydrogen-oxygen and hydrogen-fluorine rocket engines, studying also the physical and technical characteristics of slush hydrogen-mixture of the solid and liquid phase-and is concentrating currently on R&D applications of liquid hydrogen as an alternate fuel. Similar activities are also being conducted in Japan and Canada.
Liquid Hydrogen
Author: Walter Peschka
Publisher: Springer Science & Business Media
ISBN: 3709191262
Category : Science
Languages : en
Pages : 308
Book Description
to the German Edition This book is based on published material, oral presentations and lecture courses, as well as the author's personal research in the specific field of space technology and in the general areas of energy storage and transfer, and cryogenics. The science and technology of liquid hydrogen-once essential prere quisites for the rapid development of space technology-are now also proving to be more and more important for the energy production of the future. Hydrogen as an energy carrier can generally mediate the existing disparity between nuclear energy and regenerative energy, both of which are indispensable for the future. Hydrogen, as a secondary energy carrier, can be produced from these primary energy sources with minimal environmental impact and without the detrimental, long-term pollution effects of current fossil fuel technology. Hydrogen, therefore, represents the ultimate in energy technology. The initial, large-scale application of hydrogen as a secondary energy was as a high-energy rocket propellant. The procedures for its large scale liquefaction, storage and employment were generally developed in the U.S. Currently in Europe similar activities are being conducted only in France. The effort in West Germany involves testing hydrogen-oxygen and hydrogen-fluorine rocket engines, studying also the physical and technical characteristics of slush hydrogen-mixture of the solid and liquid phase-and is concentrating currently on R&D applications of liquid hydrogen as an alternate fuel. Similar activities are also being conducted in Japan and Canada.
Publisher: Springer Science & Business Media
ISBN: 3709191262
Category : Science
Languages : en
Pages : 308
Book Description
to the German Edition This book is based on published material, oral presentations and lecture courses, as well as the author's personal research in the specific field of space technology and in the general areas of energy storage and transfer, and cryogenics. The science and technology of liquid hydrogen-once essential prere quisites for the rapid development of space technology-are now also proving to be more and more important for the energy production of the future. Hydrogen as an energy carrier can generally mediate the existing disparity between nuclear energy and regenerative energy, both of which are indispensable for the future. Hydrogen, as a secondary energy carrier, can be produced from these primary energy sources with minimal environmental impact and without the detrimental, long-term pollution effects of current fossil fuel technology. Hydrogen, therefore, represents the ultimate in energy technology. The initial, large-scale application of hydrogen as a secondary energy was as a high-energy rocket propellant. The procedures for its large scale liquefaction, storage and employment were generally developed in the U.S. Currently in Europe similar activities are being conducted only in France. The effort in West Germany involves testing hydrogen-oxygen and hydrogen-fluorine rocket engines, studying also the physical and technical characteristics of slush hydrogen-mixture of the solid and liquid phase-and is concentrating currently on R&D applications of liquid hydrogen as an alternate fuel. Similar activities are also being conducted in Japan and Canada.
Taming Liquid Hydrogen
Author: Virginia Parker Dawson
Publisher:
ISBN:
Category : Centaur rocket
Languages : en
Pages : 310
Book Description
Publisher:
ISBN:
Category : Centaur rocket
Languages : en
Pages : 310
Book Description
Technology and Uses of Liquid Hydrogen
Author: R. B. Scott
Publisher: Elsevier
ISBN: 1483156427
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Technology and Uses of Liquid Hydrogen deals with the technological aspects and applications of liquid hydrogen. Topics covered include the process of producing hydrogen gas for liquefaction; thermal insulation, storage, transportation, and transfer of liquid hydrogen; liquid hydrogen engines and bubble chambers; and safety in the use of liquid hydrogen. The uses of liquid hydrogen for the production of cold neutrons inside a nuclear reactor are also discussed. This book is comprised of 11 chapters and begins with a little background, history, and statistics on the technology and uses of liquid hydrogen, followed by a review of commercially feasible processes for the production of of liquid hydrogen. The reader is then introduced to the basic principles of the liquefaction of hydrogen; hydrogen liquefiers of moderate size; the use of liquid hydrogen as a coolant/propellant for nuclear rockets; and separation of deuterium by the large-scale distillation of liquid hydrogen. Subsequent chapters explore liquid hydrogen engines and bubble chambers; safety considerations in the use of liquid hydrogen; and properties of normal and para-hydrogen. This monograph will be of interest to chemists.
Publisher: Elsevier
ISBN: 1483156427
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Technology and Uses of Liquid Hydrogen deals with the technological aspects and applications of liquid hydrogen. Topics covered include the process of producing hydrogen gas for liquefaction; thermal insulation, storage, transportation, and transfer of liquid hydrogen; liquid hydrogen engines and bubble chambers; and safety in the use of liquid hydrogen. The uses of liquid hydrogen for the production of cold neutrons inside a nuclear reactor are also discussed. This book is comprised of 11 chapters and begins with a little background, history, and statistics on the technology and uses of liquid hydrogen, followed by a review of commercially feasible processes for the production of of liquid hydrogen. The reader is then introduced to the basic principles of the liquefaction of hydrogen; hydrogen liquefiers of moderate size; the use of liquid hydrogen as a coolant/propellant for nuclear rockets; and separation of deuterium by the large-scale distillation of liquid hydrogen. Subsequent chapters explore liquid hydrogen engines and bubble chambers; safety considerations in the use of liquid hydrogen; and properties of normal and para-hydrogen. This monograph will be of interest to chemists.
Hydrogen Science and Engineering, 2 Volume Set
Author: Detlef Stolten
Publisher: John Wiley & Sons
ISBN: 3527332383
Category : Science
Languages : en
Pages : 1185
Book Description
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Publisher: John Wiley & Sons
ISBN: 3527332383
Category : Science
Languages : en
Pages : 1185
Book Description
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Hydrogen Aircraft Technology
Author: G.Daniel Brewer
Publisher: Routledge
ISBN: 1351439782
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Liquid hydrogen is shown to be the ideal fuel for civil transport aircraft, as well as for many types of military aircraft. Hydrogen Aircraft Technology discusses the potential of hydrogen for subsonic, supersonic, and hypersonic applications. Designs with sample configurations of aircraft for all three speed categories are presented, in addition to performance comparisons to equivalent designs for aircraft using conventional kerosine-type fuel and configurations for aircraft using liquid methane fuel. Other topics discussed include conceptual designs of the principal elements of fuel containment systems required for cryogenic fuels, operational elements (e.g., pumps, valves, pressure regulators, heat exchangers, lines and fittings), modifications for turbine engines to maximize the benefit of hydrogen, safety aspects compared to kerosine and methane fueled designs, equipment and facility designs for servicing hydrogen-fueled aircraft, production methods for liquid hydrogen, and the environmental advantages for using liquid hydrogen. The book also presents a plan for conducting the necessary development of technology and introducing hydrogen fuel into the worldwide civil air transport industry. Hydrogen Aircraft Technology will provide fascinating reading for anyone interested in aircraft and hydrogen fuel designs.
Publisher: Routledge
ISBN: 1351439782
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Liquid hydrogen is shown to be the ideal fuel for civil transport aircraft, as well as for many types of military aircraft. Hydrogen Aircraft Technology discusses the potential of hydrogen for subsonic, supersonic, and hypersonic applications. Designs with sample configurations of aircraft for all three speed categories are presented, in addition to performance comparisons to equivalent designs for aircraft using conventional kerosine-type fuel and configurations for aircraft using liquid methane fuel. Other topics discussed include conceptual designs of the principal elements of fuel containment systems required for cryogenic fuels, operational elements (e.g., pumps, valves, pressure regulators, heat exchangers, lines and fittings), modifications for turbine engines to maximize the benefit of hydrogen, safety aspects compared to kerosine and methane fueled designs, equipment and facility designs for servicing hydrogen-fueled aircraft, production methods for liquid hydrogen, and the environmental advantages for using liquid hydrogen. The book also presents a plan for conducting the necessary development of technology and introducing hydrogen fuel into the worldwide civil air transport industry. Hydrogen Aircraft Technology will provide fascinating reading for anyone interested in aircraft and hydrogen fuel designs.
Selected Properties of Hydrogen (engineering Design Data)
Author: Robert D. McCarty
Publisher:
ISBN:
Category : Hydrogen
Languages : en
Pages : 540
Book Description
Publisher:
ISBN:
Category : Hydrogen
Languages : en
Pages : 540
Book Description
The Hydrogen Economy
Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Sustainable Hydrogen Production
Author: Ibrahim Dincer
Publisher: Elsevier
ISBN: 0128017481
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems. - Addresses the fundamentals of hydrogen production using electrical, thermal, photonic, and biochemical energies - Presents new models, methods, and parameters for performance assessment - Provides historical background where appropriate - Outlines key connections between hydrogen production methods and environmental impact/sustainable development - Provides illustrative examples, case studies, and study problems within each chapter
Publisher: Elsevier
ISBN: 0128017481
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems. - Addresses the fundamentals of hydrogen production using electrical, thermal, photonic, and biochemical energies - Presents new models, methods, and parameters for performance assessment - Provides historical background where appropriate - Outlines key connections between hydrogen production methods and environmental impact/sustainable development - Provides illustrative examples, case studies, and study problems within each chapter
The Hype About Hydrogen
Author: Joseph J. Romm
Publisher: Island Press
ISBN: 1597266078
Category : Science
Languages : en
Pages : 252
Book Description
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.
Publisher: Island Press
ISBN: 1597266078
Category : Science
Languages : en
Pages : 252
Book Description
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.
Hydrogen Energy
Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319934619
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book describes the challenges and solutions the energy sector faces by shifting towards a hydrogen based fuel economy. The most current and up-to-date efforts of countries and leaders in the automotive sector are reviewed as they strive to develop technology and find solutions to production, storage, and distribution challenges. Hydrogen fuel is a zero-emission fuel when burned with oxygen and is often used with electrochemical cells, or combustion in internal engines, to power vehicles and electric devices. This book offers unique solutions to integrating renewable sources of energy like wind or solar power into the production of hydrogen fuel, making it a cost effective, efficient and truly renewable alternative fuel.
Publisher: Springer
ISBN: 3319934619
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
This book describes the challenges and solutions the energy sector faces by shifting towards a hydrogen based fuel economy. The most current and up-to-date efforts of countries and leaders in the automotive sector are reviewed as they strive to develop technology and find solutions to production, storage, and distribution challenges. Hydrogen fuel is a zero-emission fuel when burned with oxygen and is often used with electrochemical cells, or combustion in internal engines, to power vehicles and electric devices. This book offers unique solutions to integrating renewable sources of energy like wind or solar power into the production of hydrogen fuel, making it a cost effective, efficient and truly renewable alternative fuel.