Author: Nik Weaver
Publisher: World Scientific
ISBN: 9814740659
Category : Mathematics
Languages : en
Pages : 473
Book Description
'The book is very well-written by one of the leading figures in the subject. It is self-contained, includes relevant recent advances and is enriched by a large number of examples and illustrations. In addition to the general bibliography, each chapter includes a section of notes, which details the authorship of the main results, and provides useful hints for further readings. Undoubtedly, this edition will be received by researchers with the same success as the first one.'European Mathematical SocietyThis is the standard reference on algebras of Lipschitz functions, written by the leading figure in the field. The second edition includes new chapters on nonlinear Banach space geometry, differentiability in metric measure spaces, and quantum metrics. This latest material reflects the importance of spaces of Lipschitz functions in a diverse range of current research directions. Every functional analyst should have some knowledge of this subject.
Lipschitz Algebras (Second Edition)
Author: Nik Weaver
Publisher: World Scientific
ISBN: 9814740659
Category : Mathematics
Languages : en
Pages : 473
Book Description
'The book is very well-written by one of the leading figures in the subject. It is self-contained, includes relevant recent advances and is enriched by a large number of examples and illustrations. In addition to the general bibliography, each chapter includes a section of notes, which details the authorship of the main results, and provides useful hints for further readings. Undoubtedly, this edition will be received by researchers with the same success as the first one.'European Mathematical SocietyThis is the standard reference on algebras of Lipschitz functions, written by the leading figure in the field. The second edition includes new chapters on nonlinear Banach space geometry, differentiability in metric measure spaces, and quantum metrics. This latest material reflects the importance of spaces of Lipschitz functions in a diverse range of current research directions. Every functional analyst should have some knowledge of this subject.
Publisher: World Scientific
ISBN: 9814740659
Category : Mathematics
Languages : en
Pages : 473
Book Description
'The book is very well-written by one of the leading figures in the subject. It is self-contained, includes relevant recent advances and is enriched by a large number of examples and illustrations. In addition to the general bibliography, each chapter includes a section of notes, which details the authorship of the main results, and provides useful hints for further readings. Undoubtedly, this edition will be received by researchers with the same success as the first one.'European Mathematical SocietyThis is the standard reference on algebras of Lipschitz functions, written by the leading figure in the field. The second edition includes new chapters on nonlinear Banach space geometry, differentiability in metric measure spaces, and quantum metrics. This latest material reflects the importance of spaces of Lipschitz functions in a diverse range of current research directions. Every functional analyst should have some knowledge of this subject.
Lipschitz Algebras
Author: Nik Weaver
Publisher: World Scientific
ISBN: 9789810238735
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Publisher: World Scientific
ISBN: 9789810238735
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Mathematical Quantization
Author: Nik Weaver
Publisher: CRC Press
ISBN: 1420036238
Category : Mathematics
Languages : en
Pages : 297
Book Description
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a
Publisher: CRC Press
ISBN: 1420036238
Category : Mathematics
Languages : en
Pages : 297
Book Description
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a
A First Course in Sobolev Spaces
Author: Giovanni Leoni
Publisher: American Mathematical Soc.
ISBN: 0821847686
Category : Mathematics
Languages : en
Pages : 626
Book Description
Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Publisher: American Mathematical Soc.
ISBN: 0821847686
Category : Mathematics
Languages : en
Pages : 626
Book Description
Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Amenable Banach Algebras
Author: Volker Runde
Publisher: Springer Nature
ISBN: 1071603515
Category : Mathematics
Languages : en
Pages : 468
Book Description
This volume provides readers with a detailed introduction to the amenability of Banach algebras and locally compact groups. By encompassing important foundational material, contemporary research, and recent advancements, this monograph offers a state-of-the-art reference. It will appeal to anyone interested in questions of amenability, including those familiar with the author’s previous volume Lectures on Amenability. Cornerstone topics are covered first: namely, the theory of amenability, its historical context, and key properties of amenable groups. This introduction leads to the amenability of Banach algebras, which is the main focus of the book. Dual Banach algebras are given an in-depth exploration, as are Banach spaces, Banach homological algebra, and more. By covering amenability’s many applications, the author offers a simultaneously expansive and detailed treatment. Additionally, there are numerous exercises and notes at the end of every chapter that further elaborate on the chapter’s contents. Because it covers both the basics and cutting edge research, Amenable Banach Algebras will be indispensable to both graduate students and researchers working in functional analysis, harmonic analysis, topological groups, and Banach algebras. Instructors seeking to design an advanced course around this subject will appreciate the student-friendly elements; a prerequisite of functional analysis, abstract harmonic analysis, and Banach algebra theory is assumed.
Publisher: Springer Nature
ISBN: 1071603515
Category : Mathematics
Languages : en
Pages : 468
Book Description
This volume provides readers with a detailed introduction to the amenability of Banach algebras and locally compact groups. By encompassing important foundational material, contemporary research, and recent advancements, this monograph offers a state-of-the-art reference. It will appeal to anyone interested in questions of amenability, including those familiar with the author’s previous volume Lectures on Amenability. Cornerstone topics are covered first: namely, the theory of amenability, its historical context, and key properties of amenable groups. This introduction leads to the amenability of Banach algebras, which is the main focus of the book. Dual Banach algebras are given an in-depth exploration, as are Banach spaces, Banach homological algebra, and more. By covering amenability’s many applications, the author offers a simultaneously expansive and detailed treatment. Additionally, there are numerous exercises and notes at the end of every chapter that further elaborate on the chapter’s contents. Because it covers both the basics and cutting edge research, Amenable Banach Algebras will be indispensable to both graduate students and researchers working in functional analysis, harmonic analysis, topological groups, and Banach algebras. Instructors seeking to design an advanced course around this subject will appreciate the student-friendly elements; a prerequisite of functional analysis, abstract harmonic analysis, and Banach algebra theory is assumed.
Issues in General and Specialized Mathematics Research: 2012 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1481646575
Category : Mathematics
Languages : en
Pages : 184
Book Description
Issues in General and Specialized Mathematics Research: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1481646575
Category : Mathematics
Languages : en
Pages : 184
Book Description
Issues in General and Specialized Mathematics Research: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Banach Algebras 97
Author: Ernst Albrecht
Publisher: Walter de Gruyter
ISBN: 3110802007
Category : Mathematics
Languages : en
Pages : 576
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter
ISBN: 3110802007
Category : Mathematics
Languages : en
Pages : 576
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Renormings in Banach Spaces
Author: Antonio José Guirao
Publisher: Springer Nature
ISBN: 3031086554
Category : Mathematics
Languages : en
Pages : 621
Book Description
This monograph presents an up-to-date panorama of the different techniques and results in the large field of renorming in Banach spaces and its applications. The reader will find a self-contained exposition of the basics on convexity and differentiability, the classical results in building equivalent norms with useful properties, and the evolution of the subject from its origin to the present days. Emphasis is done on the main ideas and their connections. The book covers several goals. First, a substantial part of it can be used as a text for graduate and other advanced courses in the geometry of Banach spaces, presenting results together with proofs, remarks and developments in a structured form. Second, a large collection of recent contributions shows the actual landscape of the field, helping the reader to access the vast existing literature, with hints of proofs and relationships among the different subtopics. Third, it can be used as a reference thanks to comprehensive lists and detailed indices that may lead to expected or unexpected information. Both specialists and newcomers to the field will find this book appealing, since its content is presented in such a way that ready-to-use results may be accessed without going into the details. This flexible approach, from the in-depth reading of a proof to the search for a useful result, together with the fact that recent results are collected here for the first time in book form, extends throughout the book. Open problems and discussions are included, encouraging the advancement of this active area of research.
Publisher: Springer Nature
ISBN: 3031086554
Category : Mathematics
Languages : en
Pages : 621
Book Description
This monograph presents an up-to-date panorama of the different techniques and results in the large field of renorming in Banach spaces and its applications. The reader will find a self-contained exposition of the basics on convexity and differentiability, the classical results in building equivalent norms with useful properties, and the evolution of the subject from its origin to the present days. Emphasis is done on the main ideas and their connections. The book covers several goals. First, a substantial part of it can be used as a text for graduate and other advanced courses in the geometry of Banach spaces, presenting results together with proofs, remarks and developments in a structured form. Second, a large collection of recent contributions shows the actual landscape of the field, helping the reader to access the vast existing literature, with hints of proofs and relationships among the different subtopics. Third, it can be used as a reference thanks to comprehensive lists and detailed indices that may lead to expected or unexpected information. Both specialists and newcomers to the field will find this book appealing, since its content is presented in such a way that ready-to-use results may be accessed without going into the details. This flexible approach, from the in-depth reading of a proof to the search for a useful result, together with the fact that recent results are collected here for the first time in book form, extends throughout the book. Open problems and discussions are included, encouraging the advancement of this active area of research.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
A Course in Universal Algebra
Author: S. Burris
Publisher: Springer
ISBN: 9781461381327
Category : Mathematics
Languages : en
Pages : 276
Book Description
Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.
Publisher: Springer
ISBN: 9781461381327
Category : Mathematics
Languages : en
Pages : 276
Book Description
Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.