Author: John H. Aldrich
Publisher: SAGE
ISBN: 9780803921337
Category : Mathematics
Languages : en
Pages : 100
Book Description
After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.
Linear Probability, Logit, and Probit Models
Author: John H. Aldrich
Publisher: SAGE
ISBN: 9780803921337
Category : Mathematics
Languages : en
Pages : 100
Book Description
After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.
Publisher: SAGE
ISBN: 9780803921337
Category : Mathematics
Languages : en
Pages : 100
Book Description
After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.
Interpreting Probability Models
Author: Tim Futing Liao
Publisher: SAGE
ISBN: 9780803949997
Category : Mathematics
Languages : en
Pages : 100
Book Description
What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.
Publisher: SAGE
ISBN: 9780803949997
Category : Mathematics
Languages : en
Pages : 100
Book Description
What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.
Logit and Probit
Author: Vani K. Borooah
Publisher: SAGE
ISBN: 9780761922421
Category : Mathematics
Languages : en
Pages : 108
Book Description
Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.
Publisher: SAGE
ISBN: 9780761922421
Category : Mathematics
Languages : en
Pages : 108
Book Description
Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.
Regression Models for Categorical and Limited Dependent Variables
Author: J. Scott Long
Publisher: SAGE
ISBN: 9780803973749
Category : Mathematics
Languages : en
Pages : 334
Book Description
Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
Publisher: SAGE
ISBN: 9780803973749
Category : Mathematics
Languages : en
Pages : 334
Book Description
Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
Modeling Ordered Choices
Author: William H. Greene
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Using R for Principles of Econometrics
Author: Constantin Colonescu
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Logit Modeling
Author: Alfred DeMaris
Publisher: SAGE
ISBN: 9780803943773
Category : Business & Economics
Languages : en
Pages : 100
Book Description
Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.
Publisher: SAGE
ISBN: 9780803943773
Category : Business & Economics
Languages : en
Pages : 100
Book Description
Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.
Econometrics For Dummies
Author: Roberto Pedace
Publisher: John Wiley & Sons
ISBN: 1118533879
Category : Business & Economics
Languages : en
Pages : 380
Book Description
Score your highest in econometrics? Easy. Econometrics can prove challenging for many students unfamiliar with the terms and concepts discussed in a typical econometrics course. Econometrics For Dummies eliminates that confusion with easy-to-understand explanations of important topics in the study of economics. Econometrics For Dummies breaks down this complex subject and provides you with an easy-to-follow course supplement to further refine your understanding of how econometrics works and how it can be applied in real-world situations. An excellent resource for anyone participating in a college or graduate level econometrics course Provides you with an easy-to-follow introduction to the techniques and applications of econometrics Helps you score high on exam day If you're seeking a degree in economics and looking for a plain-English guide to this often-intimidating course, Econometrics For Dummies has you covered.
Publisher: John Wiley & Sons
ISBN: 1118533879
Category : Business & Economics
Languages : en
Pages : 380
Book Description
Score your highest in econometrics? Easy. Econometrics can prove challenging for many students unfamiliar with the terms and concepts discussed in a typical econometrics course. Econometrics For Dummies eliminates that confusion with easy-to-understand explanations of important topics in the study of economics. Econometrics For Dummies breaks down this complex subject and provides you with an easy-to-follow course supplement to further refine your understanding of how econometrics works and how it can be applied in real-world situations. An excellent resource for anyone participating in a college or graduate level econometrics course Provides you with an easy-to-follow introduction to the techniques and applications of econometrics Helps you score high on exam day If you're seeking a degree in economics and looking for a plain-English guide to this often-intimidating course, Econometrics For Dummies has you covered.
Logit Models from Economics and Other Fields
Author: J. S. Cramer
Publisher: Cambridge University Press
ISBN: 9781139438193
Category : Business & Economics
Languages : en
Pages : 188
Book Description
Logistic models are widely used in economics and other disciplines and are easily available as part of many statistical software packages. This text for graduates, practitioners and researchers in economics, medicine and statistics, which was originally published in 2003, explains the theory underlying logit analysis and gives a thorough explanation of the technique of estimation. The author has provided many empirical applications as illustrations and worked examples. A large data set - drawn from Dutch car ownership statistics - is provided online for readers to practise the techniques they have learned. Several varieties of logit model have been developed independently in various branches of biology, medicine and other disciplines. This book takes its inspiration from logit analysis as it is practised in economics, but it also pays due attention to developments in these other fields.
Publisher: Cambridge University Press
ISBN: 9781139438193
Category : Business & Economics
Languages : en
Pages : 188
Book Description
Logistic models are widely used in economics and other disciplines and are easily available as part of many statistical software packages. This text for graduates, practitioners and researchers in economics, medicine and statistics, which was originally published in 2003, explains the theory underlying logit analysis and gives a thorough explanation of the technique of estimation. The author has provided many empirical applications as illustrations and worked examples. A large data set - drawn from Dutch car ownership statistics - is provided online for readers to practise the techniques they have learned. Several varieties of logit model have been developed independently in various branches of biology, medicine and other disciplines. This book takes its inspiration from logit analysis as it is practised in economics, but it also pays due attention to developments in these other fields.
Foundations of Linear and Generalized Linear Models
Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1118730038
Category : Mathematics
Languages : en
Pages : 471
Book Description
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Publisher: John Wiley & Sons
ISBN: 1118730038
Category : Mathematics
Languages : en
Pages : 471
Book Description
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.