Author: Harry F. Tiersten
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Linear Piezoelectric Plate Vibrations
Author: Harry F. Tiersten
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Linear Piezoelectric Plate Vibrations
Author: Henry Frank Tiersten
Publisher: Springer
ISBN: 1489964533
Category : Science
Languages : en
Pages : 216
Book Description
Publisher: Springer
ISBN: 1489964533
Category : Science
Languages : en
Pages : 216
Book Description
Linear Piezoelectric Plate Vibrations
Author: Henry Frank Tiersten
Publisher:
ISBN: 9781489964540
Category :
Languages : en
Pages : 232
Book Description
Publisher:
ISBN: 9781489964540
Category :
Languages : en
Pages : 232
Book Description
Linear Piezoelectric Plate Vibrations
Author: TIERSTEN H. F.
Publisher:
ISBN: 9780306303760
Category :
Languages : en
Pages : 212
Book Description
Publisher:
ISBN: 9780306303760
Category :
Languages : en
Pages : 212
Book Description
Linear Piezoelectric Plate Vibrations : Elements of the Linear Theory of Piezoelectricity and the Vibrations of Piezoelectric Plates
Author: H. F. Tiersten
Publisher: Springer
ISBN: 9781489955944
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Publisher: Springer
ISBN: 9781489955944
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Vibration of Piezoelectric Crystal Plates
Author: Jiashi Yang
Publisher: World Scientific
ISBN: 9814449857
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The first contemporary text specializing on the dynamic problems of piezoelectric crystal plates for resonant acoustic wave devices (such as resonators, filters, and sensors) since H F Tiersten''s publication in 1969. This book provides an up-to-date, systematic and comprehensive presentation of theoretical results on waves and vibrations in quartz crystal plates. It expounds on the application of the theories of elasticity and piezoelectricity in acoustic wave devices made from crystal plates through a coverage spanning from classical results on acoustic wave resonators, up to present-day applications in acoustic wave sensors.This text begins with the exposition of the simplest thickness modes and various frequency effects in them due to electrodes, mass loading, contact with fluids, air gaps, etc., and continues on to the more complicated shear-horizontal modes, as well as straight-crested modes varying along the digonal axis of rotated Y-cut quartz. Modes varying in both of the in-plane directions of crystal plates are also addressed.The analysis within are based on the three-dimensional theories of piezoelectricity and anisotropic elasticity with various approximations when needed. Both free vibration modes (stationary waves) and propagating waves are studied in this text. Forced vibration is also treated in a few places.This book is intended to serve as an informative reference to personnel who employ piezoelectric crystal plates in the course of their profession.
Publisher: World Scientific
ISBN: 9814449857
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The first contemporary text specializing on the dynamic problems of piezoelectric crystal plates for resonant acoustic wave devices (such as resonators, filters, and sensors) since H F Tiersten''s publication in 1969. This book provides an up-to-date, systematic and comprehensive presentation of theoretical results on waves and vibrations in quartz crystal plates. It expounds on the application of the theories of elasticity and piezoelectricity in acoustic wave devices made from crystal plates through a coverage spanning from classical results on acoustic wave resonators, up to present-day applications in acoustic wave sensors.This text begins with the exposition of the simplest thickness modes and various frequency effects in them due to electrodes, mass loading, contact with fluids, air gaps, etc., and continues on to the more complicated shear-horizontal modes, as well as straight-crested modes varying along the digonal axis of rotated Y-cut quartz. Modes varying in both of the in-plane directions of crystal plates are also addressed.The analysis within are based on the three-dimensional theories of piezoelectricity and anisotropic elasticity with various approximations when needed. Both free vibration modes (stationary waves) and propagating waves are studied in this text. Forced vibration is also treated in a few places.This book is intended to serve as an informative reference to personnel who employ piezoelectric crystal plates in the course of their profession.
Vibrations of Elastic Plates
Author: Yi-Yuan Yu
Publisher: Springer Science & Business Media
ISBN: 1461223385
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.
Publisher: Springer Science & Business Media
ISBN: 1461223385
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.
Piezoelectric Energy Harvesting
Author: Alper Erturk
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
An Introduction to the Theory of Piezoelectricity
Author: Jiashi Yang
Publisher: Springer Science & Business Media
ISBN: 0387235469
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
This book is based on lecture notes for a graduate course that has been offered at University of Nebraska-Lincoln on and off since 1998. The course is intended to provide graduate students with the basic aspects of the continuum modeling of electroelastic interactions in solids. A concise treatment of linear, nonlinear, static and dynamic theories and problems is presented. The emphasis is on formulation and understanding of problems useful in device applications rather than solution techniques of mathematical problems. The mathematics used in the book is minimal. The book is suitable for a one-semester graduate course on electroelasticity. It can also be used as a reference for researchers. I would like to take this opportunity to thank UNL for a Maude Hammond Fling Faculty Research Fellowship in 2003 for the preparation of the first draft of this book. I also wish to thank Ms. Deborah Derrick of the College of Engineering and Technology at UNL for editing assistance with the book, and Professor David Y. Gao of Virginia Polytechnic Institute and State University for recommending this book to Kluwer for publication in the series of Advances in Mechanics and Mathematics. JSY Lincoln, Nebraska 2004 Preface Electroelastic materials exhibit electromechanical coupling. They experience mechanical deformations when placed in an electric field, and become electrically polarized under mechanical loads. Strictly speaking, piezoelectricity refers to linear electromechanical couplings only.
Publisher: Springer Science & Business Media
ISBN: 0387235469
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
This book is based on lecture notes for a graduate course that has been offered at University of Nebraska-Lincoln on and off since 1998. The course is intended to provide graduate students with the basic aspects of the continuum modeling of electroelastic interactions in solids. A concise treatment of linear, nonlinear, static and dynamic theories and problems is presented. The emphasis is on formulation and understanding of problems useful in device applications rather than solution techniques of mathematical problems. The mathematics used in the book is minimal. The book is suitable for a one-semester graduate course on electroelasticity. It can also be used as a reference for researchers. I would like to take this opportunity to thank UNL for a Maude Hammond Fling Faculty Research Fellowship in 2003 for the preparation of the first draft of this book. I also wish to thank Ms. Deborah Derrick of the College of Engineering and Technology at UNL for editing assistance with the book, and Professor David Y. Gao of Virginia Polytechnic Institute and State University for recommending this book to Kluwer for publication in the series of Advances in Mechanics and Mathematics. JSY Lincoln, Nebraska 2004 Preface Electroelastic materials exhibit electromechanical coupling. They experience mechanical deformations when placed in an electric field, and become electrically polarized under mechanical loads. Strictly speaking, piezoelectricity refers to linear electromechanical couplings only.
Integration of Ferroelectric and Piezoelectric Thin Films
Author: Emmanuel Defaÿ
Publisher: John Wiley & Sons
ISBN: 111861660X
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book contains four parts. The first one is dedicated to concepts. It starts with the definitions and examples of what is piezo-pyro and ferroelectricity by considering the symmetry of the material. Thereafter, these properties are described within the framework of Thermodynamics. The second part described the way to integrate these materials in Microsystems. The third part is dedicated to characterization: composition, structure and a special focused on electrical behaviors. The last part gives a survey of state of the art applications using integrated piezo or/and ferroelectric films.
Publisher: John Wiley & Sons
ISBN: 111861660X
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book contains four parts. The first one is dedicated to concepts. It starts with the definitions and examples of what is piezo-pyro and ferroelectricity by considering the symmetry of the material. Thereafter, these properties are described within the framework of Thermodynamics. The second part described the way to integrate these materials in Microsystems. The third part is dedicated to characterization: composition, structure and a special focused on electrical behaviors. The last part gives a survey of state of the art applications using integrated piezo or/and ferroelectric films.