Uncertainty Theory

Uncertainty Theory PDF Author: Baoding Liu
Publisher: Springer
ISBN: 3540731652
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.

Uncertainty Theory

Uncertainty Theory PDF Author: Baoding Liu
Publisher: Springer
ISBN: 3540731652
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.

Linear Models in Statistics

Linear Models in Statistics PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Linear Models with R

Linear Models with R PDF Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 1439887349
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

Linear Models in the Mathematics of Uncertainty

Linear Models in the Mathematics of Uncertainty PDF Author: Carol Jones
Publisher: Springer
ISBN: 3642352243
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and failed states. Finally, issues involving deaf and hard of hearing children are explored.

Uncertainty Quantification

Uncertainty Quantification PDF Author: Luis Chase
Publisher: Nova Science Publishers
ISBN: 9781536148626
Category : MATHEMATICS
Languages : en
Pages : 0

Get Book Here

Book Description
In recent times, polynomial chaos expansion has emerged as a dominant technique to determine the response uncertainties of a system by propagating the uncertainties of the inputs. In this regard, the opening chapter of Uncertainty Quantification: Advances in Research and Applications, an intrusive approach called Galerkin Projection as well as non-intrusive approaches (such as pseudo-spectral projection and linear regression) are discussed.Next, the authors introduce a new methodology to determine the uncertainties of input parameters using CIRCÉ software to overcome the reliance on expert judgment. The goal is to determinate and evaluate the uncertainty bounds for physical models related to reflood model of MARS-KS code Vessel module (coupled with COBRA-TF) using both CIRCÉ and the experimental data of FEBA.Lastly, uncertainties related to rheological model parameters of skeletal muscles are modeled and analyzed, and available data are acquired and fused for hyperelastic constitutive model parameters with Neo-Hookean and Mooney-Rivlin formulations.

Convex Models of Uncertainty in Applied Mechanics

Convex Models of Uncertainty in Applied Mechanics PDF Author: Y. Ben-Haim
Publisher: Elsevier
ISBN: 1483290972
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Recognition of the need to introduce the ideas of uncertainty in a wide variety of scientific fields today reflects in part some of the profound changes in science and engineering over the last decades. Nobody questions the ever-present need for a solid foundation in applied mechanics. Neither does anyone question nowadays the fundamental necessity to recognize that uncertainty exists, to learn to evaluate it rationally, and to incorporate it into design.This volume provides a timely and stimulating overview of the analysis of uncertainty in applied mechanics. It is not just one more rendition of the traditional treatment of the subject, nor is it intended to supplement existing structural engineering books. Its aim is to fill a gap in the existing professional literature by concentrating on the non-probabilistic model of uncertainty. It provides an alternative avenue for the analysis of uncertainty when only a limited amount of information is available. The first chapter briefly reviews probabilistic methods and discusses the sensitivity of the probability of failure to uncertain knowledge of the system. Chapter two discusses the mathematical background of convex modelling. In the remainder of the book, convex modelling is applied to various linear and nonlinear problems. Uncertain phenomena are represented throughout the book by convex sets, and this approach is referred to as convex modelling.This book is intended to inspire researchers in their goal towards further growth and development in this field.

Inferential Models

Inferential Models PDF Author: Ryan Martin
Publisher: CRC Press
ISBN: 1439886512
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaning

Nonlinear Expectations and Stochastic Calculus under Uncertainty

Nonlinear Expectations and Stochastic Calculus under Uncertainty PDF Author: Shige Peng
Publisher: Springer Nature
ISBN: 3662599031
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This book is focused on the recent developments on problems of probability model uncertainty by using the notion of nonlinear expectations and, in particular, sublinear expectations. It provides a gentle coverage of the theory of nonlinear expectations and related stochastic analysis. Many notions and results, for example, G-normal distribution, G-Brownian motion, G-Martingale representation theorem, and related stochastic calculus are first introduced or obtained by the author. This book is based on Shige Peng’s lecture notes for a series of lectures given at summer schools and universities worldwide. It starts with basic definitions of nonlinear expectations and their relation to coherent measures of risk, law of large numbers and central limit theorems under nonlinear expectations, and develops into stochastic integral and stochastic calculus under G-expectations. It ends with recent research topic on G-Martingale representation theorem and G-stochastic integral for locally integrable processes. With exercises to practice at the end of each chapter, this book can be used as a graduate textbook for students in probability theory and mathematical finance. Each chapter also concludes with a section Notes and Comments, which gives history and further references on the material covered in that chapter. Researchers and graduate students interested in probability theory and mathematical finance will find this book very useful.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems PDF Author: Luis Tenorio
Publisher: SIAM
ISBN: 1611974917
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

Richly Parameterized Linear Models

Richly Parameterized Linear Models PDF Author: James S. Hodges
Publisher: CRC Press
ISBN: 1439866848
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
A First Step toward a Unified Theory of Richly Parameterized Linear ModelsUsing mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects.Richly Param