Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000372197
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
Linear and Nonlinear Waves in Microstructured Solids
Linear and Nonlinear Waves in Microstructured Solids
Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
Applied Wave Mathematics II
Author: Arkadi Berezovski
Publisher: Springer Nature
ISBN: 3030299511
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
Publisher: Springer Nature
ISBN: 3030299511
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
Wave Processes in Solids with Microstructure
Author: Vladimir I. Erofeyev
Publisher: World Scientific
ISBN: 9789812794505
Category : Science
Languages : en
Pages : 282
Book Description
1. The fundamental hypothesis of microstructured elastic solids. Structural-phenomenological model. 1.1. Mathematical models of solids with microstructure. 1.2. Definition of material constants -- 2. Gradient elasticity media. Dispersion. Dissipation. Non-linearity. 2.1. Dynamic equations. Energy and momentum variation law. 2.2. Dispersion properties of longitudinal and shear waves. Surface Rayleigh waves. 2.3. Dissipative properties. 2.4. Nonlinear plain stationary waves. 2.5. Quasi-plain wave beams. 2.6. Self-modulation of quasi-harmonic shear waves. 2.7. Resonant interaction of quasi-harmonic waves. 2.8. Noise waves -- 3. Gradient elasticity media. Damaged medium. Magnetoelasticity. 3.1. Waves in damaged medium with microstructure. 3.2. Magneto-elastic waves in the medium with microstructure -- 4. Cosserat continuum. 4.1. Basic equations of micropolar elasticity theory. 4.2. Dispersion properties of volume waves. 4.3. Wave reflection from the free interface of micropolar halfspace. Rayleigh surface waves. 4.4. Normal waves in a micropolar layer. 4.5. Nonlinear resonant interaction of longitudinal and rotation waves. 4.6. Waves in Cosserat pseudocontinuum. 4.7. Waves in the Cosserat continuum with symmetric stress tensor -- 5. Waves in two-component mixture of solids. 5.1. Dispersion properties. 5.2. Some nonlinear wave effects -- 6. Waves in micromorphic solids. 6.1. Dynamics equations. 6.2. Different types of volume waves and their dispersion properties. 6.3. Surface shear waves in the gradient-elastic half-space with surface energy -- 7. Elasto-plastic waves in the medium with dislocations. 7.1. Equations of dynamics. 7.2. Dispersion properties. 7.3. Some nonlinear problems. 7.4. Correlation of elasto-plastic continuum and Cosserat continuum. 7.5. Example of research of the influence of dislocations on dispersion and damping of ultrasound in solid body -- 8. Wave problems of micropolar hydrodynamics. 8.1. Rotational waves in micropolar liquids. 8.2. Shear surface wave at the interface of elastic body and micropolar liquid. 8.3. Shear surface wave at the interface between elastic half-space and conducting viscous liquid in a magnetic field.
Publisher: World Scientific
ISBN: 9789812794505
Category : Science
Languages : en
Pages : 282
Book Description
1. The fundamental hypothesis of microstructured elastic solids. Structural-phenomenological model. 1.1. Mathematical models of solids with microstructure. 1.2. Definition of material constants -- 2. Gradient elasticity media. Dispersion. Dissipation. Non-linearity. 2.1. Dynamic equations. Energy and momentum variation law. 2.2. Dispersion properties of longitudinal and shear waves. Surface Rayleigh waves. 2.3. Dissipative properties. 2.4. Nonlinear plain stationary waves. 2.5. Quasi-plain wave beams. 2.6. Self-modulation of quasi-harmonic shear waves. 2.7. Resonant interaction of quasi-harmonic waves. 2.8. Noise waves -- 3. Gradient elasticity media. Damaged medium. Magnetoelasticity. 3.1. Waves in damaged medium with microstructure. 3.2. Magneto-elastic waves in the medium with microstructure -- 4. Cosserat continuum. 4.1. Basic equations of micropolar elasticity theory. 4.2. Dispersion properties of volume waves. 4.3. Wave reflection from the free interface of micropolar halfspace. Rayleigh surface waves. 4.4. Normal waves in a micropolar layer. 4.5. Nonlinear resonant interaction of longitudinal and rotation waves. 4.6. Waves in Cosserat pseudocontinuum. 4.7. Waves in the Cosserat continuum with symmetric stress tensor -- 5. Waves in two-component mixture of solids. 5.1. Dispersion properties. 5.2. Some nonlinear wave effects -- 6. Waves in micromorphic solids. 6.1. Dynamics equations. 6.2. Different types of volume waves and their dispersion properties. 6.3. Surface shear waves in the gradient-elastic half-space with surface energy -- 7. Elasto-plastic waves in the medium with dislocations. 7.1. Equations of dynamics. 7.2. Dispersion properties. 7.3. Some nonlinear problems. 7.4. Correlation of elasto-plastic continuum and Cosserat continuum. 7.5. Example of research of the influence of dislocations on dispersion and damping of ultrasound in solid body -- 8. Wave problems of micropolar hydrodynamics. 8.1. Rotational waves in micropolar liquids. 8.2. Shear surface wave at the interface of elastic body and micropolar liquid. 8.3. Shear surface wave at the interface between elastic half-space and conducting viscous liquid in a magnetic field.
Waves in Nonlinear Pre-Stressed Materials
Author: M. Destrade
Publisher: Springer Science & Business Media
ISBN: 3211735720
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
Papers in this book provide a state-of-the-art examination of waves in pre-stressed materials. You’ll gain new perspectives via a multi-disciplinary approach that interweaves key topics. These topics include the mathematical modeling of incremental material response (elastic and inelastic), an analysis of the governing differential equations, and boundary-value problems. Detailed illustrations help you visualize key concepts and processes.
Publisher: Springer Science & Business Media
ISBN: 3211735720
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
Papers in this book provide a state-of-the-art examination of waves in pre-stressed materials. You’ll gain new perspectives via a multi-disciplinary approach that interweaves key topics. These topics include the mathematical modeling of incremental material response (elastic and inelastic), an analysis of the governing differential equations, and boundary-value problems. Detailed illustrations help you visualize key concepts and processes.
Mechanics of Microstructured Solids
Author: J.-F. Ganghoffer
Publisher: Springer Science & Business Media
ISBN: 3642009115
Category : Science
Languages : en
Pages : 133
Book Description
This is a compendium of reviewed articles presented at the 11th EUROMECH-MECAMAT conference entitled, "Mechancis of microstructured solids: cellular materials, fibre reinforced solids and soft tissues." It provides all the latest information in the field.
Publisher: Springer Science & Business Media
ISBN: 3642009115
Category : Science
Languages : en
Pages : 133
Book Description
This is a compendium of reviewed articles presented at the 11th EUROMECH-MECAMAT conference entitled, "Mechancis of microstructured solids: cellular materials, fibre reinforced solids and soft tissues." It provides all the latest information in the field.
Amplification of Nonlinear Strain Waves in Solids
Author: Alexey V. Porubov
Publisher: World Scientific
ISBN: 9812794298
Category : Science
Languages : en
Pages : 229
Book Description
This book treats two problems simultaneously: sequential analytical consideration of nonlinear strain wave amplification and selection in wave guides and in a medium; demonstration of the use of even particular analytical solutions to nonintegrable equations in a design of numerical simulation of unsteady nonlinear wave processes. The text includes numerous detailed examples of the strain wave amplification and selection caused by the influence of an external medium, microstructure, moving point defects, and thermal phenomena. The main features of the book are: (1) nonlinear models of the strain wave evolution in a rod subjected by various dissipative/active factors; (2) an analytico-numerical approach for solutions to the governing nonlinear partial differential equations with dispersion and dissipation. This book is essential for introducing readers in mechanics, mechanical engineering, and applied mathematics to the concept of long nonlinear strain wave in one-dimensional wave guides. It is also suitable for self-study by professionals in all areas of nonlinear physics. Contents: Basic Concepts; Mathematical Tools for the Governing Equations Analysis; Strain Solitary Waves in an Elastic Rod; Amplification of Strain Waves in Absence of External Energy Influx; Influence of Dissipative (Active) External Medium; Bulk Active or Dissipative Sources of the Amplification and Selection. Readership: Graduate students, academics and researchers in mechanics, nonlinear science and mechanical engineering.
Publisher: World Scientific
ISBN: 9812794298
Category : Science
Languages : en
Pages : 229
Book Description
This book treats two problems simultaneously: sequential analytical consideration of nonlinear strain wave amplification and selection in wave guides and in a medium; demonstration of the use of even particular analytical solutions to nonintegrable equations in a design of numerical simulation of unsteady nonlinear wave processes. The text includes numerous detailed examples of the strain wave amplification and selection caused by the influence of an external medium, microstructure, moving point defects, and thermal phenomena. The main features of the book are: (1) nonlinear models of the strain wave evolution in a rod subjected by various dissipative/active factors; (2) an analytico-numerical approach for solutions to the governing nonlinear partial differential equations with dispersion and dissipation. This book is essential for introducing readers in mechanics, mechanical engineering, and applied mathematics to the concept of long nonlinear strain wave in one-dimensional wave guides. It is also suitable for self-study by professionals in all areas of nonlinear physics. Contents: Basic Concepts; Mathematical Tools for the Governing Equations Analysis; Strain Solitary Waves in an Elastic Rod; Amplification of Strain Waves in Absence of External Energy Influx; Influence of Dissipative (Active) External Medium; Bulk Active or Dissipative Sources of the Amplification and Selection. Readership: Graduate students, academics and researchers in mechanics, nonlinear science and mechanical engineering.
Universality of Nonclassical Nonlinearity
Author: Pier Paolo Delsanto
Publisher: Springer Science & Business Media
ISBN: 038735851X
Category : Science
Languages : en
Pages : 535
Book Description
This book presents the results of two major international research projects on phenomenology, theory and applications of Nonclassical Nonlinearity. It conveys concepts, experimental techniques and applications which were previously found in specialized journals. It also allows for an interdisciplinary audience to better understand the range of practical applications, and is timely and interesting to both researchers and professionals.
Publisher: Springer Science & Business Media
ISBN: 038735851X
Category : Science
Languages : en
Pages : 535
Book Description
This book presents the results of two major international research projects on phenomenology, theory and applications of Nonclassical Nonlinearity. It conveys concepts, experimental techniques and applications which were previously found in specialized journals. It also allows for an interdisciplinary audience to better understand the range of practical applications, and is timely and interesting to both researchers and professionals.
Microstructured Materials: Inverse Problems
Author: Jaan Janno
Publisher: Springer Science & Business Media
ISBN: 364221584X
Category : Mathematics
Languages : en
Pages : 161
Book Description
Complex, microstructured materials are widely used in industry and technology and include alloys, ceramics and composites. Focusing on non-destructive evaluation (NDE), this book explores in detail the mathematical modeling and inverse problems encountered when using ultrasound to investigate heterogeneous microstructured materials. The outstanding features of the text are firstly, a clear description of both linear and nonlinear mathematical models derived for modelling the propagation of ultrasonic deformation waves, and secondly, the provision of solutions to the corresponding inverse problems that determine the physical parameters of the models. The data are related to nonlinearities at both a macro- and micro- level, as well as to dispersion. The authors’ goal has been to construct algorithms that allow us to determine the parameters within which we are required to characterize microstructure. To achieve this, the authors not only use conventional harmonic waves, but also propose a novel methodology based on using solitary waves in NDE. The book analyzes the uniqueness and stability of the solutions, in addition to providing numerical examples.
Publisher: Springer Science & Business Media
ISBN: 364221584X
Category : Mathematics
Languages : en
Pages : 161
Book Description
Complex, microstructured materials are widely used in industry and technology and include alloys, ceramics and composites. Focusing on non-destructive evaluation (NDE), this book explores in detail the mathematical modeling and inverse problems encountered when using ultrasound to investigate heterogeneous microstructured materials. The outstanding features of the text are firstly, a clear description of both linear and nonlinear mathematical models derived for modelling the propagation of ultrasonic deformation waves, and secondly, the provision of solutions to the corresponding inverse problems that determine the physical parameters of the models. The data are related to nonlinearities at both a macro- and micro- level, as well as to dispersion. The authors’ goal has been to construct algorithms that allow us to determine the parameters within which we are required to characterize microstructure. To achieve this, the authors not only use conventional harmonic waves, but also propose a novel methodology based on using solitary waves in NDE. The book analyzes the uniqueness and stability of the solutions, in addition to providing numerical examples.
Proceedings of the Estonian Academy of Sciences, Physics and Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 168
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 168
Book Description