Author: Paul E. Fishback
Publisher: CRC Press
ISBN: 1420090658
Category : Business & Economics
Languages : en
Pages : 410
Book Description
Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.
Linear and Nonlinear Programming with Maple
Author: Paul E. Fishback
Publisher: CRC Press
ISBN: 1420090658
Category : Business & Economics
Languages : en
Pages : 410
Book Description
Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.
Publisher: CRC Press
ISBN: 1420090658
Category : Business & Economics
Languages : en
Pages : 410
Book Description
Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.
Linear and Nonlinear Programming
Author: Stephen G. Nash
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Computers
Languages : en
Pages : 744
Book Description
A complete and unified introduction to applications, theory and algorithms which contains modelling examples, computer based exercises and material on interior point methods and trust-region methods. Gives both numerical methods for optimisation and optomisation problems.
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Computers
Languages : en
Pages : 744
Book Description
A complete and unified introduction to applications, theory and algorithms which contains modelling examples, computer based exercises and material on interior point methods and trust-region methods. Gives both numerical methods for optimisation and optomisation problems.
Interactive Operations Research with Maple
Author: Mahmut Parlar
Publisher: Springer Science & Business Media
ISBN: 1461213568
Category : Business & Economics
Languages : en
Pages : 478
Book Description
Interactive Operations Research with Maple: Methods and Models has two ob jectives: to provide an accelerated introduction to the computer algebra system Maple and, more importantly, to demonstrate Maple's usefulness in modeling and solving a wide range of operations research (OR) problems. This book is written in a format that makes it suitable for a one-semester course in operations research, management science, or quantitative methods. A nwnber of students in the departments of operations research, management science, oper ations management, industrial and systems engineering, applied mathematics and advanced MBA students who are specializing in quantitative methods or opera tions management will find this text useful. Experienced researchers and practi tioners of operations research who wish to acquire a quick overview of how Maple can be useful in solving OR problems will find this an excellent reference. Maple's mathematical knowledge base now includes calculus, linear algebra, ordinary and partial differential equations, nwnber theory, logic, graph theory, combinatorics, statistics and transform methods. Although Maple's main strength lies in its ability to perform symbolic manipulations, it also has a substantial knowledge of a large nwnber of nwnerical methods and can plot many different types of attractive-looking two-dimensional and three-dimensional graphs. After almost two decades of continuous improvement of its mathematical capabilities, Maple can now boast a user base of more than 300,000 academics, researchers and students in different areas of mathematics, science and engineering.
Publisher: Springer Science & Business Media
ISBN: 1461213568
Category : Business & Economics
Languages : en
Pages : 478
Book Description
Interactive Operations Research with Maple: Methods and Models has two ob jectives: to provide an accelerated introduction to the computer algebra system Maple and, more importantly, to demonstrate Maple's usefulness in modeling and solving a wide range of operations research (OR) problems. This book is written in a format that makes it suitable for a one-semester course in operations research, management science, or quantitative methods. A nwnber of students in the departments of operations research, management science, oper ations management, industrial and systems engineering, applied mathematics and advanced MBA students who are specializing in quantitative methods or opera tions management will find this text useful. Experienced researchers and practi tioners of operations research who wish to acquire a quick overview of how Maple can be useful in solving OR problems will find this an excellent reference. Maple's mathematical knowledge base now includes calculus, linear algebra, ordinary and partial differential equations, nwnber theory, logic, graph theory, combinatorics, statistics and transform methods. Although Maple's main strength lies in its ability to perform symbolic manipulations, it also has a substantial knowledge of a large nwnber of nwnerical methods and can plot many different types of attractive-looking two-dimensional and three-dimensional graphs. After almost two decades of continuous improvement of its mathematical capabilities, Maple can now boast a user base of more than 300,000 academics, researchers and students in different areas of mathematics, science and engineering.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Nonlinear Physics with Maple for Scientists and Engineers
Author: Richard Enns
Publisher: Springer Science & Business Media
ISBN: 1468400320
Category : Science
Languages : en
Pages : 400
Book Description
Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.
Publisher: Springer Science & Business Media
ISBN: 1468400320
Category : Science
Languages : en
Pages : 400
Book Description
Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.
Nonlinear Optimization
Author: William P. Fox
Publisher: CRC Press
ISBN: 1000196968
Category : Mathematics
Languages : en
Pages : 394
Book Description
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Publisher: CRC Press
ISBN: 1000196968
Category : Mathematics
Languages : en
Pages : 394
Book Description
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Optimization
Author: Rajesh Kumar Arora
Publisher: CRC Press
ISBN: 149872115X
Category : Business & Economics
Languages : en
Pages : 454
Book Description
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co
Publisher: CRC Press
ISBN: 149872115X
Category : Business & Economics
Languages : en
Pages : 454
Book Description
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co
Game Theory
Author: E. N. Barron
Publisher: John Wiley & Sons
ISBN: 1118030656
Category : Mathematics
Languages : en
Pages : 437
Book Description
A fundamental introduction to modern game theory from a mathematical viewpoint Game theory arises in almost every fact of human and inhuman interaction since oftentimes during these communications objectives are opposed or cooperation is viewed as an option. From economics and finance to biology and computer science, researchers and practitioners are often put in complex decision-making scenarios, whether they are interacting with each other or working with evolving technology and artificial intelligence. Acknowledging the role of mathematics in making logical and advantageous decisions, Game Theory: An Introduction uses modern software applications to create, analyze, and implement effective decision-making models. While most books on modern game theory are either too abstract or too applied, this book provides a balanced treatment of the subject that is both conceptual and hands-on. Game Theory introduces readers to the basic theories behind games and presents real-world examples from various fields of study such as economics, political science, military science, finance, biological science as well as general game playing. A unique feature of this book is the use of Maple to find the values and strategies of games, and in addition, it aids in the implementation of algorithms for the solution or visualization of game concepts. Maple is also utilized to facilitate a visual learning environment of game theory and acts as the primary tool for the calculation of complex non-cooperative and cooperative games. Important game theory topics are presented within the following five main areas of coverage: Two-person zero sum matrix games Nonzero sum games and the reduction to nonlinear programming Cooperative games, including discussion of both the Nucleolus concept and the Shapley value Bargaining, including threat strategies Evolutionary stable strategies and population games Although some mathematical competence is assumed, appendices are provided to act as a refresher of the basic concepts of linear algebra, probability, and statistics. Exercises are included at the end of each section along with algorithms for the solution of the games to help readers master the presented information. Also, explicit Maple and Mathematica® commands are included in the book and are available as worksheets via the book's related Web site. The use of this software allows readers to solve many more advanced and interesting games without spending time on the theory of linear and nonlinear programming or performing other complex calculations. With extensive examples illustrating game theory's wide range of relevance, this classroom-tested book is ideal for game theory courses in mathematics, engineering, operations research, computer science, and economics at the upper-undergraduate level. It is also an ideal companion for anyone who is interested in the applications of game theory.
Publisher: John Wiley & Sons
ISBN: 1118030656
Category : Mathematics
Languages : en
Pages : 437
Book Description
A fundamental introduction to modern game theory from a mathematical viewpoint Game theory arises in almost every fact of human and inhuman interaction since oftentimes during these communications objectives are opposed or cooperation is viewed as an option. From economics and finance to biology and computer science, researchers and practitioners are often put in complex decision-making scenarios, whether they are interacting with each other or working with evolving technology and artificial intelligence. Acknowledging the role of mathematics in making logical and advantageous decisions, Game Theory: An Introduction uses modern software applications to create, analyze, and implement effective decision-making models. While most books on modern game theory are either too abstract or too applied, this book provides a balanced treatment of the subject that is both conceptual and hands-on. Game Theory introduces readers to the basic theories behind games and presents real-world examples from various fields of study such as economics, political science, military science, finance, biological science as well as general game playing. A unique feature of this book is the use of Maple to find the values and strategies of games, and in addition, it aids in the implementation of algorithms for the solution or visualization of game concepts. Maple is also utilized to facilitate a visual learning environment of game theory and acts as the primary tool for the calculation of complex non-cooperative and cooperative games. Important game theory topics are presented within the following five main areas of coverage: Two-person zero sum matrix games Nonzero sum games and the reduction to nonlinear programming Cooperative games, including discussion of both the Nucleolus concept and the Shapley value Bargaining, including threat strategies Evolutionary stable strategies and population games Although some mathematical competence is assumed, appendices are provided to act as a refresher of the basic concepts of linear algebra, probability, and statistics. Exercises are included at the end of each section along with algorithms for the solution of the games to help readers master the presented information. Also, explicit Maple and Mathematica® commands are included in the book and are available as worksheets via the book's related Web site. The use of this software allows readers to solve many more advanced and interesting games without spending time on the theory of linear and nonlinear programming or performing other complex calculations. With extensive examples illustrating game theory's wide range of relevance, this classroom-tested book is ideal for game theory courses in mathematics, engineering, operations research, computer science, and economics at the upper-undergraduate level. It is also an ideal companion for anyone who is interested in the applications of game theory.
Ordinary Differential Equations
Author: Radu Precup
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110447444
Category : Mathematics
Languages : en
Pages : 236
Book Description
This introductory text combines models from physics and biology with rigorous reasoning in describing the theory of ordinary differential equations along with applications and computer simulations with Maple. Offering a concise course in the theory of ordinary differential equations, it also enables the reader to enter the field of computer simulations. Thus, it is a valuable read for students in mathematics as well as in physics and engineering. It is also addressed to all those interested in mathematical modeling with ordinary differential equations and systems. Contents Part I: Theory Chapter 1 First-Order Differential Equations Chapter 2 Linear Differential Systems Chapter 3 Second-Order Differential Equations Chapter 4 Nonlinear Differential Equations Chapter 5 Stability of Solutions Chapter 6 Differential Systems with Control Parameters Part II: Exercises Seminar 1 Classes of First-Order Differential Equations Seminar 2 Mathematical Modeling with Differential Equations Seminar 3 Linear Differential Systems Seminar 4 Second-Order Differential Equations Seminar 5 Gronwall’s Inequality Seminar 6 Method of Successive Approximations Seminar 7 Stability of Solutions Part III: Maple Code Lab 1 Introduction to Maple Lab 2 Differential Equations with Maple Lab 3 Linear Differential Systems Lab 4 Second-Order Differential Equations Lab 5 Nonlinear Differential Systems Lab 6 Numerical Computation of Solutions Lab 7 Writing Custom Maple Programs Lab 8 Differential Systems with Control Parameters
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110447444
Category : Mathematics
Languages : en
Pages : 236
Book Description
This introductory text combines models from physics and biology with rigorous reasoning in describing the theory of ordinary differential equations along with applications and computer simulations with Maple. Offering a concise course in the theory of ordinary differential equations, it also enables the reader to enter the field of computer simulations. Thus, it is a valuable read for students in mathematics as well as in physics and engineering. It is also addressed to all those interested in mathematical modeling with ordinary differential equations and systems. Contents Part I: Theory Chapter 1 First-Order Differential Equations Chapter 2 Linear Differential Systems Chapter 3 Second-Order Differential Equations Chapter 4 Nonlinear Differential Equations Chapter 5 Stability of Solutions Chapter 6 Differential Systems with Control Parameters Part II: Exercises Seminar 1 Classes of First-Order Differential Equations Seminar 2 Mathematical Modeling with Differential Equations Seminar 3 Linear Differential Systems Seminar 4 Second-Order Differential Equations Seminar 5 Gronwall’s Inequality Seminar 6 Method of Successive Approximations Seminar 7 Stability of Solutions Part III: Maple Code Lab 1 Introduction to Maple Lab 2 Differential Equations with Maple Lab 3 Linear Differential Systems Lab 4 Second-Order Differential Equations Lab 5 Nonlinear Differential Systems Lab 6 Numerical Computation of Solutions Lab 7 Writing Custom Maple Programs Lab 8 Differential Systems with Control Parameters
Deterministic Operations Research
Author: David J. Rader
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.