Author: Guo Chun Wen
Publisher: World Scientific
ISBN: 9789810238568
Category : Mathematics
Languages : en
Pages : 260
Book Description
"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews
Linear and Nonlinear Parabolic Complex Equations
Author: Guo Chun Wen
Publisher: World Scientific
ISBN: 9789810238568
Category : Mathematics
Languages : en
Pages : 260
Book Description
"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews
Publisher: World Scientific
ISBN: 9789810238568
Category : Mathematics
Languages : en
Pages : 260
Book Description
"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews
Nonlinear Elliptic Equations of the Second Order
Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 1470426072
Category : Mathematics
Languages : en
Pages : 378
Book Description
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.
Publisher: American Mathematical Soc.
ISBN: 1470426072
Category : Mathematics
Languages : en
Pages : 378
Book Description
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.
Real and Complex Clifford Analysis
Author: Sha Huang
Publisher: Springer Science & Business Media
ISBN: 0387245367
Category : Mathematics
Languages : en
Pages : 257
Book Description
Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.
Publisher: Springer Science & Business Media
ISBN: 0387245367
Category : Mathematics
Languages : en
Pages : 257
Book Description
Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.
Superlinear Parabolic Problems
Author: Pavol Quittner
Publisher: Springer Science & Business Media
ISBN: 3764384425
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.
Publisher: Springer Science & Business Media
ISBN: 3764384425
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.
Boundary Value Problems, Integral Equations and Related Problems
Author: Guo Chun Wen
Publisher: World Scientific
ISBN: 9814327859
Category : Mathematics
Languages : en
Pages : 436
Book Description
In this volume, we report new results about various boundary value problems for partial differential equations and functional equations, theory and methods of integral equations and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theory and methods for inverse problems of mathematical physics, Clifford analysis and related problems. Contributors include: L Baratchart, B L Chen, D C Chen, S S Ding, K Q Lan, A Farajzadeh, M G Fei, T Kosztolowicz, A Makin, T Qian, J M Rassias, J Ryan, C-Q Ru, P Schiavone, P Wang, Q S Zhang, X Y Zhang, S Y Du, H Y Gao, X Li, Y Y Qiao, G C Wen, Z T Zhang, etc.
Publisher: World Scientific
ISBN: 9814327859
Category : Mathematics
Languages : en
Pages : 436
Book Description
In this volume, we report new results about various boundary value problems for partial differential equations and functional equations, theory and methods of integral equations and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theory and methods for inverse problems of mathematical physics, Clifford analysis and related problems. Contributors include: L Baratchart, B L Chen, D C Chen, S S Ding, K Q Lan, A Farajzadeh, M G Fei, T Kosztolowicz, A Makin, T Qian, J M Rassias, J Ryan, C-Q Ru, P Schiavone, P Wang, Q S Zhang, X Y Zhang, S Y Du, H Y Gao, X Li, Y Y Qiao, G C Wen, Z T Zhang, etc.
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations
Author: Beatrice Riviere
Publisher: SIAM
ISBN: 089871656X
Category : Mathematics
Languages : en
Pages : 201
Book Description
Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.
Publisher: SIAM
ISBN: 089871656X
Category : Mathematics
Languages : en
Pages : 201
Book Description
Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.
Linear and Quasilinear Parabolic Problems
Author: Herbert Amann
Publisher: Birkhäuser
ISBN: 3034892217
Category : Mathematics
Languages : en
Pages : 366
Book Description
In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.
Publisher: Birkhäuser
ISBN: 3034892217
Category : Mathematics
Languages : en
Pages : 366
Book Description
In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.
Geometric Theory of Semilinear Parabolic Equations
Author: Daniel Henry
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353
Book Description
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353
Book Description
Applied Wave Mathematics II
Author: Arkadi Berezovski
Publisher: Springer Nature
ISBN: 3030299511
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
Publisher: Springer Nature
ISBN: 3030299511
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
Further Progress in Analysis
Author: A. Okay Celebi
Publisher: World Scientific
ISBN: 9812837337
Category : Mathematics
Languages : en
Pages : 877
Book Description
The ISAAC (International Society for Analysis, its Applications and Computation) Congress, which has been held every second year since 1997, covers the major progress in analysis, applications and computation in recent years. In this proceedings volume, plenary lectures highlight the recent research results, while 17 sessions organized by well-known specialists reflect the state of the art of important subfields. This volume concentrates on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, inverse problems, functional differential and difference equations and integrable systems.
Publisher: World Scientific
ISBN: 9812837337
Category : Mathematics
Languages : en
Pages : 877
Book Description
The ISAAC (International Society for Analysis, its Applications and Computation) Congress, which has been held every second year since 1997, covers the major progress in analysis, applications and computation in recent years. In this proceedings volume, plenary lectures highlight the recent research results, while 17 sessions organized by well-known specialists reflect the state of the art of important subfields. This volume concentrates on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, inverse problems, functional differential and difference equations and integrable systems.