Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics PDF Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 1420095382
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics PDF Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 1420095382
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics PDF Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 1482248247
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Assuming no prior knowledge of linear algebra, this self-contained text offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book covers important topics in linear algebra that are useful for statisticians, including the concept of rank, the fundamental theorem of linear algebra, projectors, and quadratic forms. It also provides an extensive collection of exercises on theoretical concepts and numerical computations.

Matrix Analysis for Statistics

Matrix Analysis for Statistics PDF Author: James R. Schott
Publisher: John Wiley & Sons
ISBN: 1119092485
Category : Mathematics
Languages : en
Pages : 547

Get Book Here

Book Description
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Matrix Algebra

Matrix Algebra PDF Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Matrix Analysis and Applied Linear Algebra

Matrix Analysis and Applied Linear Algebra PDF Author: Carl D. Meyer
Publisher: SIAM
ISBN: 0898714540
Category : Mathematics
Languages : en
Pages : 729

Get Book Here

Book Description
This book avoids the traditional definition-theorem-proof format; instead a fresh approach introduces a variety of problems and examples all in a clear and informal style. The in-depth focus on applications separates this book from others, and helps students to see how linear algebra can be applied to real-life situations. Some of the more contemporary topics of applied linear algebra are included here which are not normally found in undergraduate textbooks. Theoretical developments are always accompanied with detailed examples, and each section ends with a number of exercises from which students can gain further insight. Moreover, the inclusion of historical information provides personal insights into the mathematicians who developed this subject. The textbook contains numerous examples and exercises, historical notes, and comments on numerical performance and the possible pitfalls of algorithms. Solutions to all of the exercises are provided, as well as a CD-ROM containing a searchable copy of the textbook.

Matrix Theory

Matrix Theory PDF Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Matrix Algebra From a Statistician's Perspective

Matrix Algebra From a Statistician's Perspective PDF Author: David A. Harville
Publisher: Springer Science & Business Media
ISBN: 0387783563
Category : Mathematics
Languages : en
Pages : 639

Get Book Here

Book Description
A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author's "Matrix Algebra: Exercises and Solutions."

Basics of Matrix Algebra for Statistics with R

Basics of Matrix Algebra for Statistics with R PDF Author: Nick Fieller
Publisher: CRC Press
ISBN: 1315360055
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

Matrix Algebra Useful for Statistics

Matrix Algebra Useful for Statistics PDF Author: Shayle R. Searle
Publisher: John Wiley & Sons
ISBN: 1118935144
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
A thoroughly updated guide to matrix algebra and it uses in statistical analysis and features SAS®, MATLAB®, and R throughout This Second Edition addresses matrix algebra that is useful in the statistical analysis of data as well as within statistics as a whole. The material is presented in an explanatory style rather than a formal theorem-proof format and is self-contained. Featuring numerous applied illustrations, numerical examples, and exercises, the book has been updated to include the use of SAS, MATLAB, and R for the execution of matrix computations. In addition, André I. Khuri, who has extensive research and teaching experience in the field, joins this new edition as co-author. The Second Edition also: Contains new coverage on vector spaces and linear transformations and discusses computational aspects of matrices Covers the analysis of balanced linear models using direct products of matrices Analyzes multiresponse linear models where several responses can be of interest Includes extensive use of SAS, MATLAB, and R throughout Contains over 400 examples and exercises to reinforce understanding along with select solutions Includes plentiful new illustrations depicting the importance of geometry as well as historical interludes Matrix Algebra Useful for Statistics, Second Edition is an ideal textbook for advanced undergraduate and first-year graduate level courses in statistics and other related disciplines. The book is also appropriate as a reference for independent readers who use statistics and wish to improve their knowledge of matrix algebra. THE LATE SHAYLE R. SEARLE, PHD, was professor emeritus of biometry at Cornell University. He was the author of Linear Models for Unbalanced Data and Linear Models and co-author of Generalized, Linear, and Mixed Models, Second Edition, Matrix Algebra for Applied Economics, and Variance Components, all published by Wiley. Dr. Searle received the Alexander von Humboldt Senior Scientist Award, and he was an honorary fellow of the Royal Society of New Zealand. ANDRÉ I. KHURI, PHD, is Professor Emeritus of Statistics at the University of Florida. He is the author of Advanced Calculus with Applications in Statistics, Second Edition and co-author of Statistical Tests for Mixed Linear Models, all published by Wiley. Dr. Khuri is a member of numerous academic associations, among them the American Statistical Association and the Institute of Mathematical Statistics.

Matrix Algebra for Linear Models

Matrix Algebra for Linear Models PDF Author: Marvin H. J. Gruber
Publisher: John Wiley & Sons
ISBN: 1118592557
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.