Light Emission from Rare Earth-doped Silicon Oxide Thin Films Deposited by ECR-PECVD

Light Emission from Rare Earth-doped Silicon Oxide Thin Films Deposited by ECR-PECVD PDF Author: Jing Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description

Light Emission from Rare Earth-doped Silicon Oxide Thin Films Deposited by ECR-PECVD

Light Emission from Rare Earth-doped Silicon Oxide Thin Films Deposited by ECR-PECVD PDF Author: Jing Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description


Optical and Structural Properties of Europium Doped Silicon Oxide Thin Films

Optical and Structural Properties of Europium Doped Silicon Oxide Thin Films PDF Author: Rashin Basiri Namin
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Rare earth doping is one of the main approaches to enhance the optical properties of silicon-based materials. In this work, a set of europium doped silicon oxide (Eu[subscript x]Si[subscript y]O[subscript z]) thin films are fabricated using an integrated magnetron sputtering electron cyclotron resonance plasma enhanced chemical vapor deposition (IMS-ECR-PECVD) system. The thin film composition was studied by Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD) measurements verifying high control over the Eu content by changing the sputtering power. Variable Angle spectroscopic ellipsometry (VASE) was conducted, delivering the refractive index and thickness. Using a UV laser (325 nm) excitation source, Photoluminescence (PL) measurements were performed, and it was confirmed that Eu[superscript 3+] transition which is associated with the red light emission is successfully achieved even at annealing temperatures as low as 300°C. Performing X-ray diffraction (XRD) analysis, the structural properties of the thin films were studied and the formation of Eu[subscript x]Si[subscript y]O[subscript z] crystals was confirmed for the samples annealed at elevated temperatures.

Springer Handbook of Glass

Springer Handbook of Glass PDF Author: J. David Musgraves
Publisher: Springer Nature
ISBN: 3319937286
Category : Technology & Engineering
Languages : en
Pages : 1851

Get Book Here

Book Description
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.

Crystalline Rare-Earth-doped Sesquioxide PLD-Films on alpha-Aluminia

Crystalline Rare-Earth-doped Sesquioxide PLD-Films on alpha-Aluminia PDF Author:
Publisher: Cuvillier Verlag
ISBN: 3736911491
Category : Science
Languages : de
Pages : 152

Get Book Here

Book Description
The development of integrated optical devices demands the fabrication of high-quality optically active thin films. This work focuses on thin sesquioxide films, which are promising because the sesquioxides are well-known hosts for rare-earth-ions, leading to luminescent materials and solid-state lasers with superior mechanical and thermal properties (e. g. low phonon energies, large thermal conductivity).Optical quality crystalline thin films of rare-earth-doped sesquioxides (yttria, lutetia, and scandia) have been grown by the pulsed laser deposition (PLD) technique on single-crystal (0001) a-alumina substrates. Alumina substrates offer a lattice constant that matches that of cubic Y2O3 in the á111ñ direction very well. Using Lu2O3 and Sc2O3, the mismatch of 4.8% related to Y2O3 on alumina substrates can be considerably reduced leading to the production of films with less dislocations.The crystal structure of these films (thicknesses from 1 nm to 500 nm) was determined by X-ray diffraction (XRD) and surface X-ray diffraction (SXRD) analysis. These measurements show that the films were textured along the á111ñ direction, however with a small polycrystalline component, which is negligible in thick films. Using Rutherford backscattering analysis (RBS), the correct stoichiometric composition of the films could be proved. At optimum growth conditions, epitaxial growth of Y2O3 along the á111ñ direction on the [0001] a-Al2O3 was experimentally verified by the observation of channelling in the RBS experiments.The surface morphology of the thin films has been studied using atomic force microscopy (AFM). While amorphous films have no defined surface structure, crystalline films show a triangular surface morphology, which is attributed to the á111ñ growth direction. The same structure is observed along the {111} cleavage of an yttria bulk crystal. Thin films with a mean thickness of 5 nm have no completely covered surface, but show island growth, where the shape of the single crystallites, having angles of 60° or 120° , indicates the á111ñ growth direction during the early stages of film growth.To study the optical properties of the rare-earth-doped films, spectroscopic measurements in the (vacuum-) ultraviolet and visible spectral-range have been carried out. The emission and excitation spectra of the Eu3+-doped films look similar to those of the corresponding crystalline bulk material down to a film thickness of 100 nm, i. e. the symmetry around the Eu3+-ions is preserved, whereas films with a thickness £ 20nm show a completely different emission behavior. This change can be explained by subplantation effects of high-energy plasma species hitting the substrate surface, leading to mixed compounds like Y3Al5O12. In addition, surface effects due to a large surface-to-volume ratio of the observed islands have a significant impact on the 'film' properties.For possible applications in integrated optics, waveguide experiments have been performed in the system Y2O3–Al2O3. Single-mode guiding of the fundamental mode was demonstrated in the 1 µm thick yttria layer.

Rare Earth Oxide Thin Films

Rare Earth Oxide Thin Films PDF Author: Marco Fanciulli
Publisher: Springer
ISBN: 9783642071461
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2002

Get Book Here

Book Description


Photonic Applications in Devices and Communication Systems

Photonic Applications in Devices and Communication Systems PDF Author: Peter Mascher
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Ceramic Abstracts

Ceramic Abstracts PDF Author: American Ceramic Society
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 1150

Get Book Here

Book Description


Science Abstracts

Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1360

Get Book Here

Book Description


Materials for Optoelectronics

Materials for Optoelectronics PDF Author: Maurice Quillec
Publisher: Springer Science & Business Media
ISBN: 9780792396659
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
Optoelectronics ranks one of the highest increasing rates among the different industrial branches. This activity is closely related to devices which are themselves extremely dependent on materials. Indeed, the history of optoelectronic devices has been following closely that of the materials. KLUWER Academic Publishers has thus rightly identified "Materials for Optoelectronics" as a good opportunity for a book in the series entitled "Electronic Materials; Science and Technology". Although a sound background in solid state physics is recommended, the authors have confined their contribution to a graduate student level, and tried to define any concept they use, to render the book as a whole as self-consistent as possible. In the first section the basic aspects are developed. Here, three chapters consider semiconductor materials for optoelectronics under various aspects. Prof. G. E. Stillman begins with an introduction to the field from the point of view of the optoelectronic market. Then he describes how III-V materials, especially the Multi Quantum Structures meet the requirements of optoelectronic functions, including the support of microelectronics for optoelectronic integrated circuits. In chapter 2, Prof.