Author: Tom Sidebotham
Publisher:
ISBN: 9781990015496
Category :
Languages : en
Pages :
Book Description
Level 3 Calculus Externals Learning Workbook
Author: Tom Sidebotham
Publisher:
ISBN: 9781990015496
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781990015496
Category :
Languages : en
Pages :
Book Description
Level 3 Calculus Externals Learning Workbook
Author: ESA Publications (NZ), Limited
Publisher:
ISBN: 9780908315864
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780908315864
Category :
Languages : en
Pages :
Book Description
Walker Maths Senior 2. 12 Probability Methods Workbook
Author: Charlotte Walker
Publisher:
ISBN: 9780170354240
Category : Probabilities
Languages : en
Pages : 0
Book Description
Walker Maths is a series of single standard workbooks containing high-quality, up to date material at NCEA Mathematics levels 1, 2 and 3. The well-designed, write-on workbooks contain teaching material, including relevant formulae, and ample practice exercises along with sample tasks and questions. The workbooks reflect the content and style of the new standards, and allow teachers total flexibility in course design for students at all levels. As a single standard series, Walker Maths offers Maths department the ability to buy titles all at once, or throughout the year as required. A Walker Maths Digital Teacher Resource is available for $9.95 per year for a single download. Each Digital Teacher Resource includes a Walker Maths eBook/projection file. Plus a selection of ' Worksheets ' Extra questions ' Teacher notes ' Videos ' Puzzle sheets ' Practice quizzes ' Worked solutions Schools qualify by adopting the corresponding workbook. Please contact your Sales Representative for more information.
Publisher:
ISBN: 9780170354240
Category : Probabilities
Languages : en
Pages : 0
Book Description
Walker Maths is a series of single standard workbooks containing high-quality, up to date material at NCEA Mathematics levels 1, 2 and 3. The well-designed, write-on workbooks contain teaching material, including relevant formulae, and ample practice exercises along with sample tasks and questions. The workbooks reflect the content and style of the new standards, and allow teachers total flexibility in course design for students at all levels. As a single standard series, Walker Maths offers Maths department the ability to buy titles all at once, or throughout the year as required. A Walker Maths Digital Teacher Resource is available for $9.95 per year for a single download. Each Digital Teacher Resource includes a Walker Maths eBook/projection file. Plus a selection of ' Worksheets ' Extra questions ' Teacher notes ' Videos ' Puzzle sheets ' Practice quizzes ' Worked solutions Schools qualify by adopting the corresponding workbook. Please contact your Sales Representative for more information.
Level 3 Calculus AME Workbook
Author: Phyl Haydock
Publisher:
ISBN: 9780947504465
Category : Calculus
Languages : en
Pages : 0
Book Description
Updated for 2017. For exam revision and practising exam questions. Covers the three externally assessed Level 3 Calculus Achievement Standards 3.5, 3.6 and 3.7. Features brief revision notes, examples and questions from 2016 and earlier years. Answers have A, M and E grades.
Publisher:
ISBN: 9780947504465
Category : Calculus
Languages : en
Pages : 0
Book Description
Updated for 2017. For exam revision and practising exam questions. Covers the three externally assessed Level 3 Calculus Achievement Standards 3.5, 3.6 and 3.7. Features brief revision notes, examples and questions from 2016 and earlier years. Answers have A, M and E grades.
LWB NCEA Level 3 Calculus Learning Workbook
Author: Thomas Hurst Sidebotham
Publisher:
ISBN: 9781877459665
Category : Calculus
Languages : en
Pages : 272
Book Description
Publisher:
ISBN: 9781877459665
Category : Calculus
Languages : en
Pages : 272
Book Description
Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Probabilistic Machine Learning
Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Level 2 Calculus 2.7 Learning Workbook
Author: Phyl Haydock
Publisher:
ISBN: 9781988586618
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781988586618
Category :
Languages : en
Pages :
Book Description
Social Science Research
Author: Anol Bhattacherjee
Publisher: CreateSpace
ISBN: 9781475146127
Category : Science
Languages : en
Pages : 156
Book Description
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
Publisher: CreateSpace
ISBN: 9781475146127
Category : Science
Languages : en
Pages : 156
Book Description
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.