Lectures on the Geometry of Quantization

Lectures on the Geometry of Quantization PDF Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150

Get Book Here

Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Lectures on the Geometry of Quantization

Lectures on the Geometry of Quantization PDF Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150

Get Book Here

Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.

Lectures on Geometric Quantization

Lectures on Geometric Quantization PDF Author: David John Simms
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Geometric Quantization

Geometric Quantization PDF Author: Nicholas Michael John Woodhouse
Publisher: Oxford University Press
ISBN: 9780198502708
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
The geometric approach to quantization was introduced by Konstant and Souriau more than 20 years ago. It has given valuable and lasting insights into the relationship between classical and quantum systems, and continues to be a popular research topic. The ideas have proved useful in pure mathematics, notably in representation theory, as well as in theoretical physics. The most recent applications have been in conformal field theory and in the Jones-Witten theory of knots. The successful original edition of this book was published in 1980. Now it has been completely revised and extensively rewritten. The presentation has been simplified and many new examples have been added. The material on field theory has been expanded.

Mathematical Aspects of Quantization

Mathematical Aspects of Quantization PDF Author: Sam Evens
Publisher: American Mathematical Soc.
ISBN: 0821875736
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
This book is a collection of expository articles from the Center of Mathematics at Notre Dame's 2011 program on quantization. Included are lecture notes from a summer school on quantization on topics such as the Cherednik algebra, geometric quantization, detailed proofs of Willwacher's results on the Kontsevich graph complex, and group-valued moment maps. This book also includes expository articles on quantization and automorphic forms, renormalization, Berezin-Toeplitz quantization in the complex setting, and the commutation of quantization with reduction, as well as an original article on derived Poisson brackets. The primary goal of this volume is to make topics in quantization more accessible to graduate students and researchers.

Lectures on the Mathematics of Quantum Mechanics I

Lectures on the Mathematics of Quantum Mechanics I PDF Author: Gianfausto Dell'Antonio
Publisher: Springer
ISBN: 9462391181
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving the basic notions necessary to do research in several areas of mathematical physics connected with quantum mechanics, from solid state to singular interactions, many body theory, semi-classical analysis, quantum statistical mechanics. The structure of this book is suitable for a second-semester course, in which the lectures are meant to provide, in addition to theorems and proofs, an overview of a more specific subject and hints to the direction of research. In this respect and for the width of subjects this second volume differs from other monographs on Quantum Mechanics. The second volume can be useful for students who want to have a basic preparation for doing research and for instructors who may want to use it as a basis for the presentation of selected topics.

Dynamical Systems IV

Dynamical Systems IV PDF Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 3662067935
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.

Lecture Notes on Chern-Simons-Witten Theory

Lecture Notes on Chern-Simons-Witten Theory PDF Author: Sen Hu
Publisher: World Scientific
ISBN: 9810239092
Category : Gauge fields (Physics).
Languages : en
Pages : 214

Get Book Here

Book Description
This monograph is based on lectures on topological quantum field theory given in 1989 at Princeton University by E. Witten, in which he unified several important mathematical works in terms of the Donaldson polynomial, Gromov/Floer homology, and Jones polynomials. Witten explained his three-dimensional construction of Jones polynomials, "an elegant construction of a new polynomial invariant in three-dimensional space" (per the author), via quantization of Chern-Simons gauge theory. Hu (Princeton U.) adds missing details and some new developments in the field. Annotation copyrighted by Book News Inc., Portland, OR.

Lectures on Kähler Geometry

Lectures on Kähler Geometry PDF Author: Andrei Moroianu
Publisher: Cambridge University Press
ISBN: 1139463004
Category : Mathematics
Languages : en
Pages : 4

Get Book Here

Book Description
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology PDF Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.