Lectures on Gaussian Processes

Lectures on Gaussian Processes PDF Author: Mikhail Lifshits
Publisher: Springer Science & Business Media
ISBN: 3642249388
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​

Lectures on Gaussian Processes

Lectures on Gaussian Processes PDF Author: Mikhail Lifshits
Publisher: Springer Science & Business Media
ISBN: 3642249388
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​

Lectures on Gaussian Processes

Lectures on Gaussian Processes PDF Author: Mikhail Lifshits
Publisher: Springer Science & Business Media
ISBN: 3642249396
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning PDF Author: Carl Edward Rasmussen
Publisher: MIT Press
ISBN: 026218253X
Category : Computers
Languages : en
Pages : 266

Get Book Here

Book Description
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

Zeros of Gaussian Analytic Functions and Determinantal Point Processes PDF Author: John Ben Hough
Publisher: American Mathematical Soc.
ISBN: 0821843737
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.

Advanced Lectures on Machine Learning

Advanced Lectures on Machine Learning PDF Author: Olivier Bousquet
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes

An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes PDF Author: Robert J. Adler
Publisher: IMS
ISBN: 9780940600171
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description


Efficient Reinforcement Learning Using Gaussian Processes

Efficient Reinforcement Learning Using Gaussian Processes PDF Author: Marc Peter Deisenroth
Publisher: KIT Scientific Publishing
ISBN: 3866445695
Category : Electronic computers. Computer science
Languages : en
Pages : 226

Get Book Here

Book Description
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Get Book Here

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Statistical Rethinking

Statistical Rethinking PDF Author: Richard McElreath
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Lectures on the Poisson Process

Lectures on the Poisson Process PDF Author: Günter Last
Publisher: Cambridge University Press
ISBN: 1107088011
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.