Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems PDF Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
ISBN: 0821848895
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems PDF Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
ISBN: 0821848895
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Lectures On Fractal Geometry

Lectures On Fractal Geometry PDF Author: Martina Zaehle
Publisher: World Scientific
ISBN: 9811283354
Category : Mathematics
Languages : en
Pages : 141

Get Book Here

Book Description
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.

Computers, Rigidity, and Moduli

Computers, Rigidity, and Moduli PDF Author: Shmuel Weinberger
Publisher: Princeton University Press
ISBN: 9780691118895
Category : Computers
Languages : en
Pages : 204

Get Book Here

Book Description
This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow. The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it. Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.

Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry PDF Author: Hillel Furstenberg
Publisher: American Mathematical Society
ISBN: 1470410346
Category : Mathematics
Languages : en
Pages : 82

Get Book Here

Book Description
Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.

Fractals in Biology and Medicine

Fractals in Biology and Medicine PDF Author: Gabriele A. Losa
Publisher: Birkhäuser
ISBN: 3034881193
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.

The Fractal Geometry of Nature

The Fractal Geometry of Nature PDF Author: Benoit Mandelbrot
Publisher: Echo Point Books & Media, LLC
ISBN: 9781648370410
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.

A Tale of Two Fractals

A Tale of Two Fractals PDF Author: A.A. Kirillov
Publisher: Birkhäuser
ISBN: 9781489997654
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.

Thinking in Patterns

Thinking in Patterns PDF Author: Miroslav Michal Novak
Publisher: World Scientific
ISBN: 9812388222
Category : Science
Languages : en
Pages : 336

Get Book Here

Book Description
Fractal geometry, together with the broader fields of nonlinear dynamics and complexity, represented a large segment of modern science at the end of the 20th century. Penetration of the resulting new paradigms into practically all academic disciplines has confirmed the fundamental assertion of universal formalism common to a wide range of human endeavors.This book contains an extended article by B B Mandelbrot, reviewing his contribution to fractal geometry and outlining some unsolved problems, with illustrations especially of finance and physics. It covers a range of multidisciplinary topics ? from the biology of aging, through the self-similar shape of plants, image decompression and solar magnetic fields, to sound reflection in the street. The book is a treasure trove for innovative researchers working in fields related to fractal geometry.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences

Lectures on Fractal Geometry

Lectures on Fractal Geometry PDF Author: Martina Zaehle
Publisher: World Scientific Publishing Company
ISBN: 9789811283338
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.

The Fractalist

The Fractalist PDF Author: Benoit Mandelbrot
Publisher: Vintage
ISBN: 030738991X
Category : Biography & Autobiography
Languages : en
Pages : 362

Get Book Here

Book Description
Here is the remarkable life story of Benoit Mandelbrot, the creator of fractal geometry, and his unparalleled contributions to science mathematics, the financial world, and the arts. Mandelbrot recounts his early years in Warsaw and in Paris, where he was mentored by an eminent mathematician uncle, through his days evading the Nazis in occupied France, to his education at Caltech, Princeton, and MIT, and his illustrious career at the IBM Thomas J. Watson Research Center. An outside to mainstream scientific research, he managed to do what others had thought impossible: develop a new geometry that combines revelatory beauty with a radical way of unfolding formerly hidden scientific laws. In the process he was able to use geometry to solve fresh, real-world problems. With exuberance and an eloquent fluency, Benoit Mandelbrot recounts the high points of his fascinating life, offering us a glimpse into the evolution of his extraordinary mind. With full-color inserts and black-and-white photographs throughout.