Author: Valeriu Soltan
Publisher: World Scientific
ISBN: 9811202133
Category : Mathematics
Languages : en
Pages : 611
Book Description
The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
Lectures On Convex Sets (Second Edition)
Author: Valeriu Soltan
Publisher: World Scientific
ISBN: 9811202133
Category : Mathematics
Languages : en
Pages : 611
Book Description
The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
Publisher: World Scientific
ISBN: 9811202133
Category : Mathematics
Languages : en
Pages : 611
Book Description
The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
Convex Optimization
Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Lectures on Discrete Geometry
Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 1461300398
Category : Mathematics
Languages : en
Pages : 491
Book Description
The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Publisher: Springer Science & Business Media
ISBN: 1461300398
Category : Mathematics
Languages : en
Pages : 491
Book Description
The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Lectures on Modern Convex Optimization
Author: Aharon Ben-Tal
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
Lectures on Choquet's Theorem
Author: Robert Ralph Phelps
Publisher:
ISBN:
Category : Choquet theory
Languages : en
Pages : 144
Book Description
Appearing for the first time in book form are the main results centered about Choquet's integral representation theorem-an important recent chapter in functional analysis. This theorem has applications to analysis, probability, potential theory, and functional analysis; it will doubtless have further applications as it becomes better known. This readable book presupposes a knowledge of integration theory and elementary functional analysis, including the Krein-Milman theorem and the Riesz representation theorem. --Back cover.
Publisher:
ISBN:
Category : Choquet theory
Languages : en
Pages : 144
Book Description
Appearing for the first time in book form are the main results centered about Choquet's integral representation theorem-an important recent chapter in functional analysis. This theorem has applications to analysis, probability, potential theory, and functional analysis; it will doubtless have further applications as it becomes better known. This readable book presupposes a knowledge of integration theory and elementary functional analysis, including the Krein-Milman theorem and the Riesz representation theorem. --Back cover.
An Easy Path to Convex Analysis and Applications
Author: Boris S. Mordukhovich
Publisher: Morgan & Claypool Publishers
ISBN: 1627052380
Category : Mathematics
Languages : en
Pages : 219
Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f
Publisher: Morgan & Claypool Publishers
ISBN: 1627052380
Category : Mathematics
Languages : en
Pages : 219
Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f
Convex Optimization Theory
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256
Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256
Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Convex Analysis and Global Optimization
Author: Hoang Tuy
Publisher: Springer Science & Business Media
ISBN: 1475728093
Category : Mathematics
Languages : en
Pages : 346
Book Description
Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.
Publisher: Springer Science & Business Media
ISBN: 1475728093
Category : Mathematics
Languages : en
Pages : 346
Book Description
Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.
Introduction to Nonlinear Optimization
Author: Amir Beck
Publisher: SIAM
ISBN: 1611973651
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Publisher: SIAM
ISBN: 1611973651
Category : Mathematics
Languages : en
Pages : 286
Book Description
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
First-Order Methods in Optimization
Author: Amir Beck
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476
Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476
Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.