Author: A. O. Gogolin
Publisher: Springer Science & Business Media
ISBN: 3319002120
Category : Science
Languages : en
Pages : 291
Book Description
The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
Lectures on Complex Integration
Author: A. O. Gogolin
Publisher: Springer Science & Business Media
ISBN: 3319002120
Category : Science
Languages : en
Pages : 291
Book Description
The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
Publisher: Springer Science & Business Media
ISBN: 3319002120
Category : Science
Languages : en
Pages : 291
Book Description
The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
Lecture Notes on Complex Analysis
Author: Ivan Francis Wilde
Publisher: Imperial College Press
ISBN: 1860946429
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
This book is based on lectures presented over many years to second and third year mathematics students in the Mathematics Departments at Bedford College, London, and King's College, London, as part of the BSc. and MSci. program. Its aim is to provide a gentle yet rigorous first course on complex analysis.Metric space aspects of the complex plane are discussed in detail, making this text an excellent introduction to metric space theory. The complex exponential and trigonometric functions are defined from first principles and great care is taken to derive their familiar properties. In particular, the appearance of ã, in this context, is carefully explained.The central results of the subject, such as Cauchy's Theorem and its immediate corollaries, as well as the theory of singularities and the Residue Theorem are carefully treated while avoiding overly complicated generality. Throughout, the theory is illustrated by examples.A number of relevant results from real analysis are collected, complete with proofs, in an appendix.The approach in this book attempts to soften the impact for the student who may feel less than completely comfortable with the logical but often overly concise presentation of mathematical analysis elsewhere.
Publisher: Imperial College Press
ISBN: 1860946429
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
This book is based on lectures presented over many years to second and third year mathematics students in the Mathematics Departments at Bedford College, London, and King's College, London, as part of the BSc. and MSci. program. Its aim is to provide a gentle yet rigorous first course on complex analysis.Metric space aspects of the complex plane are discussed in detail, making this text an excellent introduction to metric space theory. The complex exponential and trigonometric functions are defined from first principles and great care is taken to derive their familiar properties. In particular, the appearance of ã, in this context, is carefully explained.The central results of the subject, such as Cauchy's Theorem and its immediate corollaries, as well as the theory of singularities and the Residue Theorem are carefully treated while avoiding overly complicated generality. Throughout, the theory is illustrated by examples.A number of relevant results from real analysis are collected, complete with proofs, in an appendix.The approach in this book attempts to soften the impact for the student who may feel less than completely comfortable with the logical but often overly concise presentation of mathematical analysis elsewhere.
Twenty-One Lectures on Complex Analysis
Author: Alexander Isaev
Publisher: Springer
ISBN: 3319681702
Category : Mathematics
Languages : en
Pages : 193
Book Description
At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.
Publisher: Springer
ISBN: 3319681702
Category : Mathematics
Languages : en
Pages : 193
Book Description
At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.
Visual Complex Analysis
Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620
Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Complex Analysis
Author: Theodore W. Gamelin
Publisher: Springer Science & Business Media
ISBN: 0387216073
Category : Mathematics
Languages : en
Pages : 508
Book Description
An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.
Publisher: Springer Science & Business Media
ISBN: 0387216073
Category : Mathematics
Languages : en
Pages : 508
Book Description
An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.
Complex Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
An Introduction to Complex Analysis
Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 146140195X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Publisher: Springer Science & Business Media
ISBN: 146140195X
Category : Mathematics
Languages : en
Pages : 345
Book Description
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Complex Analysis
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1475718713
Category : Mathematics
Languages : en
Pages : 380
Book Description
The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.
Publisher: Springer Science & Business Media
ISBN: 1475718713
Category : Mathematics
Languages : en
Pages : 380
Book Description
The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.
Lectures on Measure and Integration
Author: Harold Widom
Publisher: Courier Dover Publications
ISBN: 0486810283
Category : Mathematics
Languages : en
Pages : 177
Book Description
These well-known and concise lecture notes present the fundamentals of the Lebesgue theory of integration and an introduction to some of the theory's applications. Suitable for advanced undergraduates and graduate students of mathematics, the treatment also covers topics of interest to practicing analysts. Author Harold Widom emphasizes the construction and properties of measures in general and Lebesgue measure in particular as well as the definition of the integral and its main properties. The notes contain chapters on the Lebesgue spaces and their duals, differentiation of measures in Euclidean space, and the application of integration theory to Fourier series.
Publisher: Courier Dover Publications
ISBN: 0486810283
Category : Mathematics
Languages : en
Pages : 177
Book Description
These well-known and concise lecture notes present the fundamentals of the Lebesgue theory of integration and an introduction to some of the theory's applications. Suitable for advanced undergraduates and graduate students of mathematics, the treatment also covers topics of interest to practicing analysts. Author Harold Widom emphasizes the construction and properties of measures in general and Lebesgue measure in particular as well as the definition of the integral and its main properties. The notes contain chapters on the Lebesgue spaces and their duals, differentiation of measures in Euclidean space, and the application of integration theory to Fourier series.
Complex Function Theory
Author: Donald Sarason
Publisher: American Mathematical Society
ISBN: 1470463237
Category : Mathematics
Languages : en
Pages : 177
Book Description
Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.
Publisher: American Mathematical Society
ISBN: 1470463237
Category : Mathematics
Languages : en
Pages : 177
Book Description
Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.