Frontiers in Mathematical Biology

Frontiers in Mathematical Biology PDF Author: Simon A. Levin
Publisher: Springer Science & Business Media
ISBN: 3642501249
Category : Mathematics
Languages : en
Pages : 637

Get Book Here

Book Description
From a mathematical point of view, physiologically structured population models are an underdeveloped branch of the theory of infinite dimensional dynamical systems. We have called attention to four aspects: (i) A choice has to be made about the kind of equations one extracts from the predominantly verbal arguments about the basic assumptions, and subsequently uses as a starting point for a rigorous mathematical analysis. Though differential equations are easy to formulate (different mechanisms don't interact in infinites imal time intervals and so end up as separate terms in the equations) they may be hard to interpret rigorously as infinitesimal generators. Integral equations constitute an attractive alternative. (ii) The ability of physiologically structured population models to increase our un derstanding of the relation between mechanisms at the i-level and phenomena at the p-level will depend strongly on the development of dynamical systems lab facilities which are applicable to this class of models. (iii) Physiologically structured population models are ideally suited for the for mulation of evolutionary questions. Apart from the special case of age (see Charlesworth 1980, Yodzis 1989, Caswell 1989, and the references given there) hardly any theory exists at the moment. This will, hopefully, change rapidly in the coming years. Again the development of appropriate software may turn out to be crucial.

Lindenmayer Systems, Fractals, and Plants

Lindenmayer Systems, Fractals, and Plants PDF Author: Przemyslaw Prusinkiewicz
Publisher: Springer Science & Business Media
ISBN: 1475714289
Category : Mathematics
Languages : en
Pages : 127

Get Book Here

Book Description
1-systems are a mathematical formalism which was proposed by Aristid 1indenmayer in 1968 as a foundation for an axiomatic theory of develop ment. The notion promptly attracted the attention of computer scientists, who investigated 1-systems from the viewpoint of formal language theory. This theoretical line of research was pursued very actively in the seventies, resulting in over one thousand publications. A different research direction was taken in 1984 by Alvy Ray Smith, who proposed 1-systems as a tool for synthesizing realistic images of plants and pointed out the relationship between 1-systems and the concept of fractals introduced by Benoit Mandel brot. The work by Smith inspired our studies of the application of 1-systems to computer graphics. Originally, we were interested in two problems: • Can 1-systems be used as a realistic model of plant species found in nature? • Can 1-systems be applied to generate images of a wide class of fractals? It turned out that both questions had affirmative answers. Subsequently we found that 1-systems could be applied to other areas, such as the generation of tilings, reproduction of a geometric art form from East India, and synthesis of musical scores based on an interpretation of fractals. This book collects our results related to the graphical applications of- systems. It is a corrected version of the notes which we prepared for the ACM SIGGRAPH '88 course on fractals.

Mathematical Structures of Epidemic Systems

Mathematical Structures of Epidemic Systems PDF Author: Vincenzo Capasso
Publisher: Springer Science & Business Media
ISBN: 3540565264
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .

Methods and Models in Mathematical Biology

Methods and Models in Mathematical Biology PDF Author: Johannes Müller
Publisher: Springer
ISBN: 3642272517
Category : Mathematics
Languages : en
Pages : 721

Get Book Here

Book Description
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

Gonorrhea Transmission Dynamics and Control

Gonorrhea Transmission Dynamics and Control PDF Author: H. W. Hethcote
Publisher: Springer
ISBN: 366207544X
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description


Mathematical Aspects of Reacting and Diffusing Systems

Mathematical Aspects of Reacting and Diffusing Systems PDF Author: P. C. Fife
Publisher: Springer Science & Business Media
ISBN: 3642931111
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Modeling and analyzing the dynamics of chemical mixtures by means of differ- tial equations is one of the prime concerns of chemical engineering theorists. These equations often take the form of systems of nonlinear parabolic partial d- ferential equations, or reaction-diffusion equations, when there is diffusion of chemical substances involved. A good overview of this endeavor can be had by re- ing the two volumes by R. Aris (1975), who himself was one of the main contributors to the theory. Enthusiasm for the models developed has been shared by parts of the mathematical community, and these models have, in fact, provided motivation for some beautiful mathematical results. There are analogies between chemical reactors and certain biological systems. One such analogy is rather obvious: a single living organism is a dynamic structure built of molecules and ions, many of which react and diffuse. Other analogies are less obvious; for example, the electric potential of a membrane can diffuse like a chemical, and of course can interact with real chemical species (ions) which are transported through the membrane. These facts gave rise to Hodgkin's and Huxley's celebrated model for the propagation of nerve signals. On the level of populations, individuals interact and move about, and so it is not surprising that here, again, the simplest continuous space-time interaction-migration models have the same g- eral appearance as those for diffusing and reacting chemical systems.

Time Lags in Biological Models

Time Lags in Biological Models PDF Author: N. MacDonald
Publisher: Springer Science & Business Media
ISBN: 3642931073
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these differ according to the choice of discrete or distributed lag. The models studied are drawn from the population dynamiCS of single species (logistic growth, the chemostat) and of interacting pairs of species (predation, mutualism), from cell population dynamiCS (haemopoiesis) and from biochemical kinetics (the Goodwin oscillator). The last chapter is devoted to a population model employing difference equations. All these models include non-linear terms.

The Dynamics of Physiologically Structured Populations

The Dynamics of Physiologically Structured Populations PDF Author: Johan A. Metz
Publisher: Springer
ISBN: 3662131595
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description


Topics in Mathematical Biology

Topics in Mathematical Biology PDF Author: Karl Peter Hadeler
Publisher: Springer
ISBN: 331965621X
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.

Algebras in Genetics

Algebras in Genetics PDF Author: Angelika Wörz-Busekros
Publisher: Springer Science & Business Media
ISBN: 3642510388
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and translation required another year. I hope that the notes in their present state provide a reasonable review and that they will facilitate access to this field. I am especially grateful to Professor K. -P. Hadeler and Professor P. Holgate for reading the manuscript and giving essential comments to all versions of the text. I am also very grateful to Dr. I. Heuch for many discussions during and after his stay in TUbingen. I wish to thank Dr. V. M.