The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

First Principles of Instruction

First Principles of Instruction PDF Author: M. David Merrill
Publisher: John Wiley & Sons
ISBN: 1118235029
Category : Business & Economics
Languages : en
Pages : 588

Get Book Here

Book Description
This handy resource describes and illustrates the concepts underlying the “First Principles of Instruction” and illustrates First Principles and their application in a wide variety of instructional products. The book introduces the e3 Course Critique Checklist that can be used to evaluate existing instructional product. It also provides directions for applying this checklist and illustrates its use for a variety of different kinds of courses. The Author has also developed a Pebble-in-the-Pond instructional design model with an accompanying e3 ID Checklist. This checklist enables instructional designers to design and develop instructional products that more adequately implement First Principles of Instruction.

Control Systems and Reinforcement Learning

Control Systems and Reinforcement Learning PDF Author: Sean Meyn
Publisher: Cambridge University Press
ISBN: 1316511960
Category : Business & Economics
Languages : en
Pages : 453

Get Book Here

Book Description
A how-to guide and scientific tutorial covering the universe of reinforcement learning and control theory for online decision making.

The Great Mental Models, Volume 1

The Great Mental Models, Volume 1 PDF Author: Shane Parrish
Publisher: Penguin
ISBN: 0593719972
Category : Business & Economics
Languages : en
Pages : 209

Get Book Here

Book Description
Discover the essential thinking tools you’ve been missing with The Great Mental Models series by Shane Parrish, New York Times bestselling author and the mind behind the acclaimed Farnam Street blog and “The Knowledge Project” podcast. This first book in the series is your guide to learning the crucial thinking tools nobody ever taught you. Time and time again, great thinkers such as Charlie Munger and Warren Buffett have credited their success to mental models–representations of how something works that can scale onto other fields. Mastering a small number of mental models enables you to rapidly grasp new information, identify patterns others miss, and avoid the common mistakes that hold people back. The Great Mental Models: Volume 1, General Thinking Concepts shows you how making a few tiny changes in the way you think can deliver big results. Drawing on examples from history, business, art, and science, this book details nine of the most versatile, all-purpose mental models you can use right away to improve your decision making and productivity. This book will teach you how to: Avoid blind spots when looking at problems. Find non-obvious solutions. Anticipate and achieve desired outcomes. Play to your strengths, avoid your weaknesses, … and more. The Great Mental Models series demystifies once elusive concepts and illuminates rich knowledge that traditional education overlooks. This series is the most comprehensive and accessible guide on using mental models to better understand our world, solve problems, and gain an advantage.

Learning Theory from First Principles

Learning Theory from First Principles PDF Author: Francis Bach
Publisher: MIT Press
ISBN: 0262049449
Category : Computers
Languages : en
Pages : 497

Get Book Here

Book Description
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory. Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students. Provides a balanced and unified treatment of most prevalent machine learning methods Emphasizes practical application and features only commonly used algorithmic frameworks Covers modern topics not found in existing texts, such as overparameterized models and structured prediction Integrates coverage of statistical theory, optimization theory, and approximation theory Focuses on adaptivity, allowing distinctions between various learning techniques Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors

Introduction to Machine Learning

Introduction to Machine Learning PDF Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 0262028182
Category : Computers
Languages : en
Pages : 639

Get Book Here

Book Description
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

The Art of Proof

The Art of Proof PDF Author: Matthias Beck
Publisher: Springer Science & Business Media
ISBN: 1441970231
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition PDF Author: Mehryar Mohri
Publisher: MIT Press
ISBN: 0262351366
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory PDF Author: Michael J. Kearns
Publisher: MIT Press
ISBN: 9780262111935
Category : Computers
Languages : en
Pages : 230

Get Book Here

Book Description
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

The Art of Learning

The Art of Learning PDF Author: Josh Waitzkin
Publisher: Simon and Schuster
ISBN: 0743277465
Category : Biography & Autobiography
Languages : en
Pages : 291

Get Book Here

Book Description
An eight-time national chess champion and world champion martial artist shares the lessons he has learned from two very different competitive arenas, identifying key principles about learning and performance that readers can apply to their life goals. Reprint. 35,000 first printing.