Learning-Based Adaptive Control

Learning-Based Adaptive Control PDF Author: Mouhacine Benosman
Publisher: Butterworth-Heinemann
ISBN: 0128031514
Category : Technology & Engineering
Languages : en
Pages : 284

Get Book Here

Book Description
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.

Learning-Based Control

Learning-Based Control PDF Author: Zhong-Ping Jiang
Publisher: Now Publishers
ISBN: 9781680837520
Category : Technology & Engineering
Languages : en
Pages : 122

Get Book Here

Book Description
The recent success of Reinforcement Learning and related methods can be attributed to several key factors. First, it is driven by reward signals obtained through the interaction with the environment. Second, it is closely related to the human learning behavior. Third, it has a solid mathematical foundation. Nonetheless, conventional Reinforcement Learning theory exhibits some shortcomings particularly in a continuous environment or in considering the stability and robustness of the controlled process. In this monograph, the authors build on Reinforcement Learning to present a learning-based approach for controlling dynamical systems from real-time data and review some major developments in this relatively young field. In doing so the authors develop a framework for learning-based control theory that shows how to learn directly suboptimal controllers from input-output data. There are three main challenges on the development of learning-based control. First, there is a need to generalize existing recursive methods. Second, as a fundamental difference between learning-based control and Reinforcement Learning, stability and robustness are important issues that must be addressed for the safety-critical engineering systems such as self-driving cars. Third, data efficiency of Reinforcement Learning algorithms need be addressed for safety-critical engineering systems. This monograph provides the reader with an accessible primer on a new direction in control theory still in its infancy, namely Learning-Based Control Theory, that is closely tied to the literature of safe Reinforcement Learning and Adaptive Dynamic Programming.

Adaptive Control Design and Analysis

Adaptive Control Design and Analysis PDF Author: Gang Tao
Publisher: John Wiley & Sons
ISBN: 9780471274520
Category : Science
Languages : en
Pages : 652

Get Book Here

Book Description
A systematic and unified presentation of the fundamentals of adaptive control theory in both continuous time and discrete time Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory. Adaptive Control Design and Analysis features: Introduction to systems and control Stability, operator norms, and signal convergence Adaptive parameter estimation State feedback adaptive control designs Parametrization of state observers for adaptive control Unified continuous and discrete-time adaptive control L1+a robustness theory for adaptive systems Direct and indirect adaptive control designs Benchmark comparison study of adaptive control designs Multivariate adaptive control Nonlinear adaptive control Adaptive compensation of actuator nonlinearities End-of-chapter discussion, problems, and advanced topics As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike.

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305

Get Book Here

Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.

Applications of Neural Adaptive Control Technology

Applications of Neural Adaptive Control Technology PDF Author: Jens Kalkkuhl
Publisher: World Scientific
ISBN: 9789810231514
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.

Advances in Aerospace Guidance, Navigation and Control

Advances in Aerospace Guidance, Navigation and Control PDF Author: Qiping Chu
Publisher: Springer Science & Business Media
ISBN: 3642382533
Category : Technology & Engineering
Languages : en
Pages : 773

Get Book Here

Book Description
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.

Adaptive and Learning-Based Control of Safety-Critical Systems

Adaptive and Learning-Based Control of Safety-Critical Systems PDF Author: Max Cohen
Publisher: Springer Nature
ISBN: 303129310X
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
This book stems from the growing use of learning-based techniques, such as reinforcement learning and adaptive control, in the control of autonomous and safety-critical systems. Safety is critical to many applications, such as autonomous driving, air traffic control, and robotics. As these learning-enabled technologies become more prevalent in the control of autonomous systems, it becomes increasingly important to ensure that such systems are safe. To address these challenges, the authors provide a self-contained treatment of learning-based control techniques with rigorous guarantees of stability and safety. This book contains recent results on provably correct control techniques from specifications that go beyond safety and stability, such as temporal logic formulas. The authors bring together control theory, optimization, machine learning, and formal methods and present worked-out examples and extensive simulation examples to complement the mathematical style of presentation. Prerequisites are minimal, and the underlying ideas are accessible to readers with only a brief background in control-theoretic ideas, such as Lyapunov stability theory.

Robust Adaptive Control

Robust Adaptive Control PDF Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Functional Adaptive Control

Functional Adaptive Control PDF Author: Simon Fabri
Publisher: Springer Science & Business Media
ISBN: 9781852334383
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Unique in its systematic approach to stochastic systems, this book presents a wide range of techniques that lead to novel strategies for effecting intelligent control of complex systems that are typically characterised by uncertainty, nonlinear dynamics, component failure, unpredictable disturbances, multi-modality and high dimensional spaces.

Adaptive Learning Methods for Nonlinear System Modeling

Adaptive Learning Methods for Nonlinear System Modeling PDF Author: Danilo Comminiello
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Category : Technology & Engineering
Languages : en
Pages : 390

Get Book Here

Book Description
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.