Introduction to Google

Introduction to Google PDF Author: Gilad James, PhD
Publisher: Gilad James Mystery School
ISBN: 5955187898
Category :
Languages : en
Pages : 68

Get Book Here

Book Description
Google is an American multinational technology company that specializes in internet-related services and products. It was founded in 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University. The company's mission is to organize the world's information and make it universally accessible and useful. Its flagship product is the search engine, which has become synonymous with conducting online searches. In addition to the search engine, Google offers a variety of other products and services, including email (Gmail), document creation and editing (Google Drive), video sharing (YouTube), and social networking (Google+). Google's success has been driven by its innovative approaches to technology, rigorous focus on user experience, and deep commitment to data-driven decision making. It has consistently been ranked as one of the world's most valuable brands and has a market capitalization of over $1 trillion. The company's continued growth and expansion have been fueled by a constant stream of new products, partnerships, and acquisitions. Today, Google is one of the world's largest and most influential companies, with a presence in almost every country and over 100,000 employees worldwide.

Building Machine Learning and Deep Learning Models on Google Cloud Platform

Building Machine Learning and Deep Learning Models on Google Cloud Platform PDF Author: Ekaba Bisong
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703

Get Book Here

Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Official Google Cloud Certified Professional Machine Learning Engineer Study Guide

Official Google Cloud Certified Professional Machine Learning Engineer Study Guide PDF Author: Mona Mona
Publisher: John Wiley & Sons
ISBN: 1119981565
Category : Computers
Languages : en
Pages : 460

Get Book Here

Book Description
Expert, guidance for the Google Cloud Machine Learning certification exam In Google Cloud Certified Professional Machine Learning Study Guide, a team of accomplished artificial intelligence (AI) and machine learning (ML) specialists delivers an expert roadmap to AI and ML on the Google Cloud Platform based on new exam curriculum. With Sybex, you’ll prepare faster and smarter for the Google Cloud Certified Professional Machine Learning Engineer exam and get ready to hit the ground running on your first day at your new job as an ML engineer. The book walks readers through the machine learning process from start to finish, starting with data, feature engineering, model training, and deployment on Google Cloud. It also discusses best practices on when to pick a custom model vs AutoML or pretrained models with Vertex AI platform. All technologies such as Tensorflow, Kubeflow, and Vertex AI are presented by way of real-world scenarios to help you apply the theory to practical examples and show you how IT professionals design, build, and operate secure ML cloud environments. The book also shows you how to: Frame ML problems and architect ML solutions from scratch Banish test anxiety by verifying and checking your progress with built-in self-assessments and other practical tools Use the Sybex online practice environment, complete with practice questions and explanations, a glossary, objective maps, and flash cards A can’t-miss resource for everyone preparing for the Google Cloud Certified Professional Machine Learning certification exam, or for a new career in ML powered by the Google Cloud Platform, this Sybex Study Guide has everything you need to take the next step in your career.

Hands-On Machine Learning on Google Cloud Platform

Hands-On Machine Learning on Google Cloud Platform PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788398874
Category : Computers
Languages : en
Pages : 489

Get Book Here

Book Description
Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Google Machine Learning and Generative AI for Solutions Architects

Google Machine Learning and Generative AI for Solutions Architects PDF Author: Kieran Kavanagh
Publisher: Packt Publishing Ltd
ISBN: 1803247029
Category : Computers
Languages : en
Pages : 552

Get Book Here

Book Description
Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively Key Features Understand key concepts, from fundamentals through to complex topics, via a methodical approach Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies. You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process. By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.What you will learn Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark Source, understand, and prepare data for ML workloads Build, train, and deploy ML models on Google Cloud Create an effective MLOps strategy and implement MLOps workloads on Google Cloud Discover common challenges in typical AI/ML projects and get solutions from experts Explore vector databases and their importance in Generative AI applications Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows Who this book is for This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material.

Python 3 Data Visualization Using Google Gemini

Python 3 Data Visualization Using Google Gemini PDF Author: Oswald Campesato
Publisher: Stylus Publishing, LLC
ISBN: 1501519832
Category : Computers
Languages : en
Pages : 199

Get Book Here

Book Description
This book offers a comprehensive guide to leveraging Python-based data visualization techniques with the innovative capabilities of Google Gemini. Tailored for individuals proficient in Python seeking to enhance their visualization skills, it explores essential libraries like Pandas, Matplotlib, and Seaborn, along with insights into the innovative Gemini platform. With a focus on practicality and efficiency, it delivers a rapid yet thorough exploration of data visualization methodologies, supported by Gemini-generated code samples. Companion files with source code and figures are available for downloading. FEATURES: Covers Python-based data visualization libraries and techniques Includes practical examples and Gemini-generated code samples for efficient learning Integrates Google Gemini for advanced data visualization capabilities Sets up a conducive development environment for a seamless coding experience Includes companion files for downloading with source code and figures

Learning Vocabulary in Another Language Google eBook

Learning Vocabulary in Another Language Google eBook PDF Author: I. S. P. Nation
Publisher: Cambridge University Press
ISBN: 1107549000
Category : Foreign Language Study
Languages : en
Pages : 640

Get Book Here

Book Description
An updated edition of the key reference work in the area of second and foreign language vocabulary studies. This book provides a detailed survey of research and theory on the teaching and learning of vocabulary with the aim of providing pedagogical suggestions for both teachers and learners. It contains descriptions of numerous vocabulary learning strategies which are justified and supported by reference to experimental research, case studies, and teaching experience. It also describes what vocabulary learners need to know to be effective language users. This title shows that by taking a systematic approach to vocabulary learning, teachers can make the best use of class time and help learners get the best return for their learning effort.

Google Certification Guide - Google Professional Machine Learning Engineer

Google Certification Guide - Google Professional Machine Learning Engineer PDF Author: Cybellium Ltd
Publisher: Cybellium Ltd
ISBN:
Category : Computers
Languages : en
Pages : 171

Get Book Here

Book Description
Google Certification Guide - Google Professional Machine Learning Engineer Unlock the World of Machine Learning on Google Cloud Embark on a transformative journey to become a Google Professional Machine Learning Engineer with this comprehensive guide. Designed for those who aspire to master the application of machine learning techniques and tools in the Google Cloud environment, this book is an essential resource for professionals seeking to harness the power of ML in their projects and workflows. What Awaits Inside: Advanced ML Concepts and Practices: Dive deep into the world of machine learning on Google Cloud, covering services like AI Platform, TensorFlow, and BigQuery ML. Real-World Applications: Learn through practical scenarios and hands-on examples, illustrating the effective implementation of machine learning models and solutions on Google Cloud. Strategic Exam Preparation: Gain crucial insights into the certification exam's structure and content, complemented by comprehensive practice questions and preparation strategies. Cutting-Edge ML Trends: Stay updated with the latest advancements in Google Cloud machine learning technologies, ensuring your skills remain relevant and innovative. Authored by a Machine Learning Expert Written by an experienced practitioner in the field of machine learning on Google Cloud, this guide bridges the gap between theoretical knowledge and practical application, offering a rich and comprehensive learning experience. Your Comprehensive Guide to ML Certification Whether you’re an experienced machine learning engineer or looking to elevate your expertise in Google Cloud's ML offerings, this book is a valuable companion, guiding you through the intricacies of machine learning in Google Cloud and preparing you for the Professional Machine Learning Engineer certification. Elevate Your Machine Learning Journey This guide is more than a pathway to certification; it's a deep dive into the practical and innovative aspects of machine learning in the Google Cloud environment, designed to equip you with the skills and knowledge for a thriving career in this dynamic field. Begin Your Machine Learning Adventure Start your journey to becoming a certified Google Professional Machine Learning Engineer. This guide is not just about passing an exam; it's about unlocking new opportunities and frontiers in the exciting world of machine learning on Google Cloud. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Journey to Become a Google Cloud Machine Learning Engineer

Journey to Become a Google Cloud Machine Learning Engineer PDF Author: Dr. Logan Song
Publisher: Packt Publishing Ltd
ISBN: 1803239417
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
Prepare for the GCP ML certification exam along with exploring cloud computing and machine learning concepts and gaining Google Cloud ML skills Key FeaturesA comprehensive yet easy-to-follow Google Cloud machine learning study guideExplore full-spectrum and step-by-step practice examples to develop hands-on skillsRead through and learn from in-depth discussions of Google ML certification exam questionsBook Description This book aims to provide a study guide to learn and master machine learning in Google Cloud: to build a broad and strong knowledge base, train hands-on skills, and get certified as a Google Cloud Machine Learning Engineer. The book is for someone who has the basic Google Cloud Platform (GCP) knowledge and skills, and basic Python programming skills, and wants to learn machine learning in GCP to take their next step toward becoming a Google Cloud Certified Machine Learning professional. The book starts by laying the foundations of Google Cloud Platform and Python programming, followed the by building blocks of machine learning, then focusing on machine learning in Google Cloud, and finally ends the studying for the Google Cloud Machine Learning certification by integrating all the knowledge and skills together. The book is based on the graduate courses the author has been teaching at the University of Texas at Dallas. When going through the chapters, the reader is expected to study the concepts, complete the exercises, understand and practice the labs in the appendices, and study each exam question thoroughly. Then, at the end of the learning journey, you can expect to harvest the knowledge, skills, and a certificate. What you will learnProvision Google Cloud services related to data science and machine learningProgram with the Python programming language and data science librariesUnderstand machine learning concepts and model development processesExplore deep learning concepts and neural networksBuild, train, and deploy ML models with Google BigQuery ML, Keras, and Google Cloud Vertex AIDiscover the Google Cloud ML Application Programming Interface (API)Prepare to achieve Google Cloud Professional Machine Learning Engineer certificationWho this book is for Anyone from the cloud computing, data analytics, and machine learning domains, such as cloud engineers, data scientists, data engineers, ML practitioners, and engineers, will be able to acquire the knowledge and skills and achieve the Google Cloud professional ML Engineer certification with this study guide. Basic knowledge of Google Cloud Platform and Python programming is required to get the most out of this book.

Google Cloud AI and Machine Learning Certification

Google Cloud AI and Machine Learning Certification PDF Author: Cybellium
Publisher: Cybellium Ltd
ISBN: 1836798164
Category : Computers
Languages : en
Pages : 228

Get Book Here

Book Description
Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com

Learning Google Cloud Vertex AI

Learning Google Cloud Vertex AI PDF Author: Hemanth Kumar K
Publisher: BPB Publications
ISBN: 9355515359
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
Learn how to build an end-to-end data to AI solution on Google Cloud using Vertex AI KEY FEATURES ● Harness the power of AutoML capabilities to build machine learning models. ● Learn how to train custom machine learning models on the Google Cloud Platform. ● Accelerate your career in data analytics by leveraging the capabilities of GCP. DESCRIPTION Google Cloud Vertex AI is a platform for machine learning (ML) offered by Google Cloud, with the objective of making the creation, deployment, and administration of ML models on a large scale easier. If you are seeking a unified and collaborative environment for your ML projects, this book is a valuable resource for you. This comprehensive guide is designed to help data enthusiasts effectively utilize Google Cloud Platform's Vertex AI for a wide range of machine learning operations. It covers the basics of the Google Cloud Platform, encompassing cloud storage, big query, and IAM. Subsequently, it delves into the specifics of Vertex AI, including AutoML, custom model training, model deployment on endpoints, development of Vertex AI pipelines, and the Explainable AI feature store. By the time you finish reading this book, you will be able to navigate Vertex AI proficiently, even if you lack prior experience with cloud platforms. With the inclusion of numerous code examples throughout the book, you will be equipped with the necessary skills and confidence to create machine learning solutions using Vertex AI. WHAT YOU WILL LEARN ● Learn how to create projects, store data in GCP, and manage access permissions effectively. ● Discover how AutoML can be utilized for streamlining workflows. ● Learn how to construct pipelines using TFX (TensorFlow Extended) and Kubeflow components. ● Gain an overview of the purpose and significance of the Feature Store. ● Explore the concept of explainable AI and its role in understanding machine learning models. WHO THIS BOOK IS FOR This book is designed for data scientists and advanced AI practitioners who are interested in learning how to perform machine learning tasks on the Google Cloud Platform. Having prior knowledge of machine learning concepts and proficiency in Python programming would greatly benefit readers. TABLE OF CONTENTS 1. Basics of Google Cloud Platform 2. Introduction to Vertex AI and AutoML Tabular 3. AutoML Image, Text, and Pre-built Models 4. Vertex AI Workbench and Custom Model Training 5. Vertex AI Custom Model Hyperparameter and Deployment 6. Introduction to Pipelines and Kubeflow 7. Pipelines using Kubeflow for Custom Models 8. Pipelines using TensorFlow Extended 9. Vertex AI Feature Store 10. Explainable AI