Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Lattices and Ordered Sets
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Introduction to Lattices and Order
Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 1107717523
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Publisher: Cambridge University Press
ISBN: 1107717523
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Lattices and Ordered Algebraic Structures
Author: T.S. Blyth
Publisher: Springer Science & Business Media
ISBN: 1852339055
Category : Mathematics
Languages : en
Pages : 311
Book Description
"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 1852339055
Category : Mathematics
Languages : en
Pages : 311
Book Description
"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
Lattice Theory
Author: George Gratzer
Publisher: Courier Corporation
ISBN: 048647173X
Category : Mathematics
Languages : en
Pages : 242
Book Description
This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.
Publisher: Courier Corporation
ISBN: 048647173X
Category : Mathematics
Languages : en
Pages : 242
Book Description
This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.
The Theory of Lattice-Ordered Groups
Author: V.M. Kopytov
Publisher: Springer Science & Business Media
ISBN: 9401583048
Category : Mathematics
Languages : en
Pages : 408
Book Description
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.
Publisher: Springer Science & Business Media
ISBN: 9401583048
Category : Mathematics
Languages : en
Pages : 408
Book Description
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.
Ordered Sets
Author: Egbert Harzheim
Publisher: Springer Science & Business Media
ISBN: 0387242198
Category : Mathematics
Languages : en
Pages : 391
Book Description
The textbook literature on ordered sets is still rather limited. A lot of material is presented in this book that appears now for the first time in a textbook. Order theory works with combinatorial and set-theoretical methods, depending on whether the sets under consideration are finite or infinite. In this book the set-theoretical parts prevail. The book treats in detail lexicographic products and their connections with universally ordered sets, and further it gives thorough investigations on the structure of power sets. Other topics dealt with include dimension theory of ordered sets, well-quasi-ordered sets, trees, combinatorial set theory for ordered sets, comparison of order types, and comparibility graphs. Audience This book is intended for mathematics students and for mathemeticians who are interested in set theory. Only some fundamental parts of naïve set theory are presupposed. Since all proofs are worked out in great detail, the book should be suitable as a text for a course on order theory.
Publisher: Springer Science & Business Media
ISBN: 0387242198
Category : Mathematics
Languages : en
Pages : 391
Book Description
The textbook literature on ordered sets is still rather limited. A lot of material is presented in this book that appears now for the first time in a textbook. Order theory works with combinatorial and set-theoretical methods, depending on whether the sets under consideration are finite or infinite. In this book the set-theoretical parts prevail. The book treats in detail lexicographic products and their connections with universally ordered sets, and further it gives thorough investigations on the structure of power sets. Other topics dealt with include dimension theory of ordered sets, well-quasi-ordered sets, trees, combinatorial set theory for ordered sets, comparison of order types, and comparibility graphs. Audience This book is intended for mathematics students and for mathemeticians who are interested in set theory. Only some fundamental parts of naïve set theory are presupposed. Since all proofs are worked out in great detail, the book should be suitable as a text for a course on order theory.
Lattice-ordered Rings and Modules
Author: Stuart A. Steinberg
Publisher: Springer Science & Business Media
ISBN: 1441917217
Category : Mathematics
Languages : en
Pages : 639
Book Description
This book provides an exposition of the algebraic aspects of the theory of lattice-ordered rings and lattice-ordered modules. All of the background material on rings, modules, and lattice-ordered groups necessary to make the work self-contained and accessible to a variety of readers is included. Filling a gap in the literature, Lattice-Ordered Rings and Modules may be used as a textbook or for self-study by graduate students and researchers studying lattice-ordered rings and lattice-ordered modules. Steinberg presents the material through 800+ extensive examples of varying levels of difficulty along with numerous exercises at the end of each section. Key topics include: lattice-ordered groups, rings, and fields; archimedean $l$-groups; f-rings and larger varieties of $l$-rings; the category of f-modules; various commutativity results.
Publisher: Springer Science & Business Media
ISBN: 1441917217
Category : Mathematics
Languages : en
Pages : 639
Book Description
This book provides an exposition of the algebraic aspects of the theory of lattice-ordered rings and lattice-ordered modules. All of the background material on rings, modules, and lattice-ordered groups necessary to make the work self-contained and accessible to a variety of readers is included. Filling a gap in the literature, Lattice-Ordered Rings and Modules may be used as a textbook or for self-study by graduate students and researchers studying lattice-ordered rings and lattice-ordered modules. Steinberg presents the material through 800+ extensive examples of varying levels of difficulty along with numerous exercises at the end of each section. Key topics include: lattice-ordered groups, rings, and fields; archimedean $l$-groups; f-rings and larger varieties of $l$-rings; the category of f-modules; various commutativity results.
Ordered Sets
Author: Bernd Schröder
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Introduction to Lattice Theory with Computer Science Applications
Author: Vijay K. Garg
Publisher: John Wiley & Sons
ISBN: 1119069734
Category : Computers
Languages : en
Pages : 272
Book Description
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Publisher: John Wiley & Sons
ISBN: 1119069734
Category : Computers
Languages : en
Pages : 272
Book Description
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Lattice-Ordered Groups
Author: M.E Anderson
Publisher: Springer Science & Business Media
ISBN: 9400928718
Category : Computers
Languages : en
Pages : 197
Book Description
The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].
Publisher: Springer Science & Business Media
ISBN: 9400928718
Category : Computers
Languages : en
Pages : 197
Book Description
The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].