Latent Variable Modeling and Applications to Causality

Latent Variable Modeling and Applications to Causality PDF Author: Maia Berkane
Publisher: Springer Science & Business Media
ISBN: 146121842X
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.

Latent Variable Modeling and Applications to Causality

Latent Variable Modeling and Applications to Causality PDF Author: Maia Berkane
Publisher: Springer Science & Business Media
ISBN: 146121842X
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.

Latent Variable Models

Latent Variable Models PDF Author: John C. Loehlin
Publisher: Psychology Press
ISBN: 1135614342
Category : Business & Economics
Languages : en
Pages : 303

Get Book Here

Book Description
This book introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. This approach helps less mathematically inclined students grasp the underlying relationships between path analysis, factor analysis, and structural equation modeling more easily. A few sections of the book make use of elementary matrix algebra. An appendix on the topic is provided for those who need a review. The author maintains an informal style so as to increase the book's accessibility. Notes at the end of each chapter provide some of the more technical details. The book is not tied to a particular computer program, but special attention is paid to LISREL, EQS, AMOS, and Mx. New in the fourth edition of Latent Variable Models: *a data CD that features the correlation and covariance matrices used in the exercises; *new sections on missing data, non-normality, mediation, factorial invariance, and automating the construction of path diagrams; and *reorganization of chapters 3-7 to enhance the flow of the book and its flexibility for teaching. Intended for advanced students and researchers in the areas of social, educational, clinical, industrial, consumer, personality, and developmental psychology, sociology, political science, and marketing, some prior familiarity with correlation and regression is helpful.

Handbook of Multivariate Experimental Psychology

Handbook of Multivariate Experimental Psychology PDF Author: John R. Nesselroade
Publisher: Springer Science & Business Media
ISBN: 1461308933
Category : Psychology
Languages : en
Pages : 977

Get Book Here

Book Description
When the first edition of this Handbook was fields are likely to be hard reading, but anyone who wants to get in touch with the published in 1966 I scarcely gave thought to a future edition. Its whole purpose was to growing edges will find something to meet his inaugurate a radical new outlook on ex taste. perimental psychology, and if that could be Of course, this book will need teachers. As accomplished it was sufficient reward. In the it supersedes the narrow conceptions of 22 years since we have seen adequate-indeed models and statistics still taught as bivariate staggering-evidence that the growth of a new and ANOV A methods of experiment, in so branch of psychological method in science has many universities, those universities will need become established. The volume of research to expand their faculties with newly trained has grown apace in the journals and has young people. The old vicious circle of opened up new areas and a surprising increase obsoletely trained members turning out new of knowledge in methodology. obsoletely trained members has to be The credit for calling attention to the need recognized and broken. And wherever re for new guidance belongs to many members search deals with integral wholes-in per of the Society of Multivariate Experimental sonalities, processes, and groups-researchers Psychology, but the actual innervation is due will recognize the vast new future that to the skill and endurance of one man, John multivariate methods open up.

An Introduction to Causal Inference

An Introduction to Causal Inference PDF Author: Judea Pearl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781507894293
Category : Causation
Languages : en
Pages : 0

Get Book Here

Book Description
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Linear Causal Modeling with Structural Equations

Linear Causal Modeling with Structural Equations PDF Author: Stanley A. Mulaik
Publisher: CRC Press
ISBN: 1439800391
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Emphasizing causation as a functional relationship between variables, this book provides comprehensive coverage on the basics of SEM. It takes readers through the process of identifying, estimating, analyzing, and evaluating a range of models. The author discusses the history and philosophy of causality and its place in science and presents graph theory as a tool for the design and analysis of causal models. He explains how the algorithms in SEM are derived and how they work, covers various indices and tests for evaluating the fit of structural equation models to data, and explores recent research in graph theory, path tracing rules, and model evaluation.

Ecological Statistics

Ecological Statistics PDF Author: Gordon A. Fox
Publisher: Oxford University Press
ISBN: 0199672547
Category : Computers
Languages : en
Pages : 407

Get Book Here

Book Description
The application and interpretation of statistics are central to ecological study and practice. Ecologists are now asking more sophisticated questions than in the past. These new questions, together with the continued growth of computing power and the availability of new software, have created a new generation of statistical techniques. These have resulted in major recent developments in both our understanding and practice of ecological statistics. This novel book synthesizes a number of these changes, addressing key approaches and issues that tend to be overlooked in other books such as missing/censored data, correlation structure of data, heterogeneous data, and complex causal relationships. These issues characterize a large proportion of ecological data, but most ecologists' training in traditional statistics simply does not provide them with adequate preparation to handle the associated challenges. Uniquely, Ecological Statistics highlights the underlying links among many statistical approaches that attempt to tackle these issues. In particular, it gives readers an introduction to approaches to inference, likelihoods, generalized linear (mixed) models, spatially or phylogenetically-structured data, and data synthesis, with a strong emphasis on conceptual understanding and subsequent application to data analysis. Written by a team of practicing ecologists, mathematical explanations have been kept to the minimum necessary. This user-friendly textbook will be suitable for graduate students, researchers, and practitioners in the fields of ecology, evolution, environmental studies, and computational biology who are interested in updating their statistical tool kits. A companion web site provides example data sets and commented code in the R language.

Counterfactuals and Causal Inference

Counterfactuals and Causal Inference PDF Author: Stephen L. Morgan
Publisher: Cambridge University Press
ISBN: 1316165159
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
In this second edition of Counterfactuals and Causal Inference, completely revised and expanded, the essential features of the counterfactual approach to observational data analysis are presented with examples from the social, demographic, and health sciences. Alternative estimation techniques are first introduced using both the potential outcome model and causal graphs; after which, conditioning techniques, such as matching and regression, are presented from a potential outcomes perspective. For research scenarios in which important determinants of causal exposure are unobserved, alternative techniques, such as instrumental variable estimators, longitudinal methods, and estimation via causal mechanisms, are then presented. The importance of causal effect heterogeneity is stressed throughout the book, and the need for deep causal explanation via mechanisms is discussed.

Causality

Causality PDF Author: Judea Pearl
Publisher: Cambridge University Press
ISBN: 052189560X
Category : Computers
Languages : en
Pages : 487

Get Book Here

Book Description
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...

Structural Equations with Latent Variables

Structural Equations with Latent Variables PDF Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 111861903X
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.

Methods in Comparative Effectiveness Research

Methods in Comparative Effectiveness Research PDF Author: Constantine Gatsonis
Publisher: CRC Press
ISBN: 1351659456
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
Comparative effectiveness research (CER) is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care (IOM 2009). CER is conducted to develop evidence that will aid patients, clinicians, purchasers, and health policy makers in making informed decisions at both the individual and population levels. CER encompasses a very broad range of types of studies—experimental, observational, prospective, retrospective, and research synthesis. This volume covers the main areas of quantitative methodology for the design and analysis of CER studies. The volume has four major sections—causal inference; clinical trials; research synthesis; and specialized topics. The audience includes CER methodologists, quantitative-trained researchers interested in CER, and graduate students in statistics, epidemiology, and health services and outcomes research. The book assumes a masters-level course in regression analysis and familiarity with clinical research.