Author: Gyözö G. Láng
Publisher: Springer Science & Business Media
ISBN: 3642276512
Category : Science
Languages : en
Pages : 296
Book Description
Laser-enabled measurements are valuable tools for the investigation of surfaces and interfaces or for the in situ investigation of interfacial processes including electrode processes. The understanding of the thermodynamics of solid/liquid surfaces is important for surface science and electrochemistry. In the first part of this book, the authors describe a range of techniques for investigating interfacial tension and surface stress, which is important for coatings, thin films, and fuel cells. The techniques covered comprise bending beam (bending plate, bending cantilever, wafer curvature) methods with different detection techniques. Special attention is given to methods using optical detection by laser beam deflection or interferometry. The second part is devoted to the techniques based on the detection of refractive index gradients in the solution. The refractive index changes could be related to concentration gradients (Probe Beam Deflection, PBD) or light-induced thermal gradients (Photothermal Deflection Spectroscopy, PDS). The application of the techniques to surface-confined and solution electrochemical systems is described. Subsequently, a comparison with others techniques able to monitor ion fluxes is performed.
Laser Techniques for the Study of Electrode Processes
Author: Gyözö G. Láng
Publisher: Springer Science & Business Media
ISBN: 3642276512
Category : Science
Languages : en
Pages : 296
Book Description
Laser-enabled measurements are valuable tools for the investigation of surfaces and interfaces or for the in situ investigation of interfacial processes including electrode processes. The understanding of the thermodynamics of solid/liquid surfaces is important for surface science and electrochemistry. In the first part of this book, the authors describe a range of techniques for investigating interfacial tension and surface stress, which is important for coatings, thin films, and fuel cells. The techniques covered comprise bending beam (bending plate, bending cantilever, wafer curvature) methods with different detection techniques. Special attention is given to methods using optical detection by laser beam deflection or interferometry. The second part is devoted to the techniques based on the detection of refractive index gradients in the solution. The refractive index changes could be related to concentration gradients (Probe Beam Deflection, PBD) or light-induced thermal gradients (Photothermal Deflection Spectroscopy, PDS). The application of the techniques to surface-confined and solution electrochemical systems is described. Subsequently, a comparison with others techniques able to monitor ion fluxes is performed.
Publisher: Springer Science & Business Media
ISBN: 3642276512
Category : Science
Languages : en
Pages : 296
Book Description
Laser-enabled measurements are valuable tools for the investigation of surfaces and interfaces or for the in situ investigation of interfacial processes including electrode processes. The understanding of the thermodynamics of solid/liquid surfaces is important for surface science and electrochemistry. In the first part of this book, the authors describe a range of techniques for investigating interfacial tension and surface stress, which is important for coatings, thin films, and fuel cells. The techniques covered comprise bending beam (bending plate, bending cantilever, wafer curvature) methods with different detection techniques. Special attention is given to methods using optical detection by laser beam deflection or interferometry. The second part is devoted to the techniques based on the detection of refractive index gradients in the solution. The refractive index changes could be related to concentration gradients (Probe Beam Deflection, PBD) or light-induced thermal gradients (Photothermal Deflection Spectroscopy, PDS). The application of the techniques to surface-confined and solution electrochemical systems is described. Subsequently, a comparison with others techniques able to monitor ion fluxes is performed.
Electrode Materials for Energy Storage and Conversion
Author: Mesfin A. Kebede
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Electrochemical Methods of Nanostructure Preparation
Author: László Péter
Publisher: Springer Nature
ISBN: 3030691179
Category : Science
Languages : en
Pages : 544
Book Description
This book summarizes the electrochemical routes of nanostructure preparation in a systematic and didactic manner. It provides a comprehensive overview of electrodeposition, anodization, carbon nanotube preparation and other methods of nanostructure fabrication, combining essential information on the physical background of electrochemistry with materials science aspects of the field. The book includes a brief introduction to general electrochemistry with an emphasis on physico-chemical aspects, followed by a description of the sample preparation methods. In each chapter, an overview of the particular method is accompanied by a discussion of the relevant physical or chemical properties of the materials, including magnetic, mechanical, optical, catalytic, sensoric and other features. While some preparation methods are discussed in connection with the theories of physical electrochemistry (e.g. electrodeposition), the book also covers methods that are more heuristic but nonetheless utilize electric current (e.g. anodization of porous alumina or synthesis of carbon nanotubes by means of electric arc discharge).
Publisher: Springer Nature
ISBN: 3030691179
Category : Science
Languages : en
Pages : 544
Book Description
This book summarizes the electrochemical routes of nanostructure preparation in a systematic and didactic manner. It provides a comprehensive overview of electrodeposition, anodization, carbon nanotube preparation and other methods of nanostructure fabrication, combining essential information on the physical background of electrochemistry with materials science aspects of the field. The book includes a brief introduction to general electrochemistry with an emphasis on physico-chemical aspects, followed by a description of the sample preparation methods. In each chapter, an overview of the particular method is accompanied by a discussion of the relevant physical or chemical properties of the materials, including magnetic, mechanical, optical, catalytic, sensoric and other features. While some preparation methods are discussed in connection with the theories of physical electrochemistry (e.g. electrodeposition), the book also covers methods that are more heuristic but nonetheless utilize electric current (e.g. anodization of porous alumina or synthesis of carbon nanotubes by means of electric arc discharge).
Photoelectrochemistry, Fundamental Processes and Measurement Techniques
Author:
Publisher:
ISBN:
Category : Electrochemistry
Languages : en
Pages : 740
Book Description
Publisher:
ISBN:
Category : Electrochemistry
Languages : en
Pages : 740
Book Description
Electrochemical Dictionary
Author: Allen J. Bard
Publisher: Springer Science & Business Media
ISBN: 3642295509
Category : Science
Languages : en
Pages : 994
Book Description
This second edition of the highly successful dictionary offers more than 300 new or revised terms. A distinguished panel of electrochemists provides up-to-date, broad and authoritative coverage of 3000 terms most used in electrochemistry and energy research as well as related fields, including relevant areas of physics and engineering. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. Almost 600 figures and illustrations elaborate the textual definitions. The “Electrochemical Dictionary” also contains biographical entries of people who have substantially contributed to electrochemistry. From reviews of the first edition: ‘the creators of the Electrochemical Dictionary have done a laudable job to ensure that each definition included here has been defined in precise terms in a clear and readily accessible style’ (The Electric Review) ‘It is a must for any scientific library, and a personal purchase can be strongly suggested to anybody interested in electrochemistry’ (Journal of Solid State Electrochemistry) ‘The text is readable, intelligible and very well written’ (Reference Reviews)
Publisher: Springer Science & Business Media
ISBN: 3642295509
Category : Science
Languages : en
Pages : 994
Book Description
This second edition of the highly successful dictionary offers more than 300 new or revised terms. A distinguished panel of electrochemists provides up-to-date, broad and authoritative coverage of 3000 terms most used in electrochemistry and energy research as well as related fields, including relevant areas of physics and engineering. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. Almost 600 figures and illustrations elaborate the textual definitions. The “Electrochemical Dictionary” also contains biographical entries of people who have substantially contributed to electrochemistry. From reviews of the first edition: ‘the creators of the Electrochemical Dictionary have done a laudable job to ensure that each definition included here has been defined in precise terms in a clear and readily accessible style’ (The Electric Review) ‘It is a must for any scientific library, and a personal purchase can be strongly suggested to anybody interested in electrochemistry’ (Journal of Solid State Electrochemistry) ‘The text is readable, intelligible and very well written’ (Reference Reviews)
Heterogenous Photochemical Electron Transfer
Author: Michael Gratzel
Publisher: CRC Press
ISBN: 1351081659
Category : Science
Languages : en
Pages : 170
Book Description
The present monograph attempts to unify these diverse and exciting new developments within a common framework. First, the physical principles underlying heterogenous electron-transfer processes are outlined in a concise way and are compared to the homogeneous counterpart. This analysis includes the notion of the Fermi level in liquids and solids as well as the distribution of electronic energy levels in solids and liquids. A comparison is made between the salient kinetic features of homogeneous and heterogeneous electron transfer reactions. This establishes the basis for the subsequent treatment of the transduction of excitation energy and photo-initiated electron transfer in organized molecular assemblies, such as micelles, vesicles and monolayers. Transmembrane redox processes are critically reviewed. Particular attention is given to semiconductor electrodes and particles. This includes a discussion of quantum size effects, the nature of space charge layers as well as surface states and the dynamics of charge carrier-induced redox reactions at the semiconductor solution interface. These processes are of fundamental importance in such diverse fields as photochromism, electrochromic displays, electroreprography and photography, information storage, photocatalysis, photodegradation of paints, and solar energy conversion.
Publisher: CRC Press
ISBN: 1351081659
Category : Science
Languages : en
Pages : 170
Book Description
The present monograph attempts to unify these diverse and exciting new developments within a common framework. First, the physical principles underlying heterogenous electron-transfer processes are outlined in a concise way and are compared to the homogeneous counterpart. This analysis includes the notion of the Fermi level in liquids and solids as well as the distribution of electronic energy levels in solids and liquids. A comparison is made between the salient kinetic features of homogeneous and heterogeneous electron transfer reactions. This establishes the basis for the subsequent treatment of the transduction of excitation energy and photo-initiated electron transfer in organized molecular assemblies, such as micelles, vesicles and monolayers. Transmembrane redox processes are critically reviewed. Particular attention is given to semiconductor electrodes and particles. This includes a discussion of quantum size effects, the nature of space charge layers as well as surface states and the dynamics of charge carrier-induced redox reactions at the semiconductor solution interface. These processes are of fundamental importance in such diverse fields as photochromism, electrochromic displays, electroreprography and photography, information storage, photocatalysis, photodegradation of paints, and solar energy conversion.
Laser-induced Graphene
Author: Ruquan Ye
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Encyclopedia of Interfacial Chemistry
Author:
Publisher: Elsevier
ISBN: 0128098945
Category : Science
Languages : en
Pages : 5276
Book Description
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
Publisher: Elsevier
ISBN: 0128098945
Category : Science
Languages : en
Pages : 5276
Book Description
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
Handbook of Electrochemistry
Author: Cynthia G. Zoski
Publisher: Elsevier
ISBN: 0444519580
Category : Science
Languages : en
Pages : 935
Book Description
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
Publisher: Elsevier
ISBN: 0444519580
Category : Science
Languages : en
Pages : 935
Book Description
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
Journal of Research of the National Bureau of Standards
Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 554
Book Description
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 554
Book Description