Laser Processing of Engineering Materials

Laser Processing of Engineering Materials PDF Author: John Ion
Publisher: Elsevier
ISBN: 0080492800
Category : Technology & Engineering
Languages : en
Pages : 589

Get Book Here

Book Description
The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques

Advanced Manufacturing Techniques Using Laser Material Processing

Advanced Manufacturing Techniques Using Laser Material Processing PDF Author: Akinlabi, Esther Titilayo
Publisher: IGI Global
ISBN: 1522503307
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
The use of lasers in material processing has become a useful method for transforming industrial materials into finished products. The benefits of laser material processing are vast, including increased precision, high processing speed, and dustless cutting and drilling. Advanced Manufacturing Techniques Using Laser Material Processing explores the latest methodologies for using lasers in materials manufacturing and production, the benefits of using lasers in industrial settings, as well as future outlooks for this technology. This innovative publication is an essential reference source for professionals, researchers, and graduate-level students studying manufacturing technologies and industrial engineering.

Laser Material Processing

Laser Material Processing PDF Author: William M. Steen
Publisher: Springer Science & Business Media
ISBN: 1447137523
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
New chapters on bending and cleaning reflect the changes in the field since the last edition, completing the range of practical knowledge about the processes possible with lasers already familiar to users of this well-known text. Professor Steen's lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford, which will bring a smile to your face and ease the learning process. From the reviews: "...well organized, and the text is very practical...The engineering community will find this book informative and useful." (OPTICS AND PHOTONICS NEWS, July/August 2005)

Laser Processing of Materials

Laser Processing of Materials PDF Author: Peter Schaaf
Publisher: Springer Science & Business Media
ISBN: 3642132812
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.

Advances in Laser Materials Processing

Advances in Laser Materials Processing PDF Author: Jonathan R. Lawrence
Publisher: Woodhead Publishing
ISBN: 0081012535
Category : Technology & Engineering
Languages : en
Pages : 802

Get Book Here

Book Description
Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. - A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines - Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing - Provides revised, expanded and updated coverage

Laser Processing of Engineering Materials

Laser Processing of Engineering Materials PDF Author: John Ion
Publisher: Elsevier
ISBN: 0080492800
Category : Technology & Engineering
Languages : en
Pages : 589

Get Book Here

Book Description
The complete guide to understanding and using lasers in material processing!Lasers are now an integral part of modern society, providing extraordinary opportunities for innovation in an ever-widening range of material processing and manufacturing applications. The study of laser material processing is a core element of many materials and manufacturing courses at undergraduate and postgraduate level. As a consequence, there is now a vast amount of research on the theory and application of lasers to be absorbed by students, industrial researchers, practising engineers and production managers. Written by an acknowledged expert in the field with over twenty years' experience in laser processing, John Ion distils cutting-edge information and research into a single key text. Essential for anyone studying or working with lasers, Laser Processing of Engineering Materials provides a clear explanation of the underlying principles, including physics, chemistry and materials science, along with a framework of available laser processes and their distinguishing features and variables. This book delivers the knowledge needed to understand and apply lasers to the processing of engineering materials, and is highly recommended as a valuable guide to this revolutionary manufacturing technology. The first single volume text that treats this core engineering subject in a systematic manner Covers the principles, practice and application of lasers in all contemporary industrial processes; packed with examples, materials data and analysis, and modelling techniques

The Theory of Laser Materials Processing

The Theory of Laser Materials Processing PDF Author: John Dowden
Publisher: Springer
ISBN: 331956711X
Category : Science
Languages : en
Pages : 442

Get Book Here

Book Description
The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.

Laser Additive Manufacturing

Laser Additive Manufacturing PDF Author: Milan Brandt
Publisher: Woodhead Publishing
ISBN: 0081004346
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. - Provides a comprehensive one-volume overview of advances in laser additive manufacturing - Presents detailed coverage of the latest techniques used for laser additive manufacturing - Reviews both established and emerging areas of application

Principles of Laser Materials Processing

Principles of Laser Materials Processing PDF Author: Elijah Kannatey-Asibu, Jr.
Publisher: John Wiley & Sons
ISBN: 0470459190
Category : Technology & Engineering
Languages : en
Pages : 849

Get Book Here

Book Description
Coverage of the most recent advancements and applications in laser materials processing This book provides state-of-the-art coverage of the field of laser materials processing, from fundamentals to applications to the latest research topics. The content is divided into three succinct parts: Principles of laser engineering-an introduction to the basic concepts and characteristics of lasers, design of their components, and beam delivery Engineering background&-a review of engineering concepts needed to analyze different processes: thermal analysis and fluid flow; solidification of molten metal; and residual stresses that evolve during processes Laser materials processing-a rigorous and detailed treatment of laser materials processing and its principle applications, including laser cutting and drilling, welding, surface modification, laser forming, and rapid prototyping Each chapter includes an outline, summary, and example sets to help readers reinforce their understanding of the material. This book is designed to prepare graduate students who will be entering industry; researchers interested in initiating a research program; and practicing engineers who need to stay abreast of the latest developments in this rapidly evolving field.

Laser Cutting Guide for Manufacturing

Laser Cutting Guide for Manufacturing PDF Author: Charles L. Caristan
Publisher: Society of Manufacturing Engineers
ISBN: 0872636860
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Laser Cutting Guide for Manufacturing presents practical information and troubleshooting and design tools from a quality manufacturing perspective. Equally applicable to small shops as it is to large fabricator companies, this guide is a roadmap for developing, implementing, operating, and maintaining a laser-cutting manufacturing enterprise. The book focuses on metal cutting of sheets, plates, tubes, and 3-D shaped stampings. It presents today's reality of the engineering and business challenges, and opportunities presented by the rapid penetration cutting in all facets of industry.

Laser Micro-Nano-Manufacturing and 3D Microprinting

Laser Micro-Nano-Manufacturing and 3D Microprinting PDF Author: Anming Hu
Publisher: Springer Nature
ISBN: 3030593134
Category : Science
Languages : en
Pages : 377

Get Book Here

Book Description
This book provides a comprehensive overview of the latest advances in laser techniques for micro-nano-manufacturing and an in-depth analysis of applications, such as 3D printing and nanojoining. Lasers have gained increasing significance as a precise tool for advanced manufacturing. Written by world leading scientists, the first part of the book presents the fundamentals of laser interaction with materials at the micro- and nanoscale, including multiphoton excitation and nonthermal melting, and allows readers to better understand advanced processing. In the second part, the authors focus on various advanced fabrications, such as laser peening, surface nanoengineering, and plasmonic heating. Finally, case studies are devoted to special applications, such as 3D printing, microfluidics devices, energy devices, and plasmonic and photonic waveguides. This book integrates both theoretical and experimental analysis. The combination of tutorial chapters and concentrated case studies will be critically attractive to undergraduate and graduate students, researchers, and engineers in the relevant fields. Readers will grasp the full picture of the application of laser for micro-nanomanufacturing and 3D printing.