Large Sample Inference For Long Memory Processes

Large Sample Inference For Long Memory Processes PDF Author: Donatas Surgailis
Publisher: World Scientific Publishing Company
ISBN: 1911299387
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Box and Jenkins (1970) made the idea of obtaining a stationary time series by differencing the given, possibly nonstationary, time series popular. Numerous time series in economics are found to have this property. Subsequently, Granger and Joyeux (1980) and Hosking (1981) found examples of time series whose fractional difference becomes a short memory process, in particular, a white noise, while the initial series has unbounded spectral density at the origin, i.e. exhibits long memory.Further examples of data following long memory were found in hydrology and in network traffic data while in finance the phenomenon of strong dependence was established by dramatic empirical success of long memory processes in modeling the volatility of the asset prices and power transforms of stock market returns.At present there is a need for a text from where an interested reader can methodically learn about some basic asymptotic theory and techniques found useful in the analysis of statistical inference procedures for long memory processes. This text makes an attempt in this direction. The authors provide in a concise style a text at the graduate level summarizing theoretical developments both for short and long memory processes and their applications to statistics. The book also contains some real data applications and mentions some unsolved inference problems for interested researchers in the field./a

Large Sample Inference For Long Memory Processes

Large Sample Inference For Long Memory Processes PDF Author: Donatas Surgailis
Publisher: World Scientific Publishing Company
ISBN: 1911299387
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Box and Jenkins (1970) made the idea of obtaining a stationary time series by differencing the given, possibly nonstationary, time series popular. Numerous time series in economics are found to have this property. Subsequently, Granger and Joyeux (1980) and Hosking (1981) found examples of time series whose fractional difference becomes a short memory process, in particular, a white noise, while the initial series has unbounded spectral density at the origin, i.e. exhibits long memory.Further examples of data following long memory were found in hydrology and in network traffic data while in finance the phenomenon of strong dependence was established by dramatic empirical success of long memory processes in modeling the volatility of the asset prices and power transforms of stock market returns.At present there is a need for a text from where an interested reader can methodically learn about some basic asymptotic theory and techniques found useful in the analysis of statistical inference procedures for long memory processes. This text makes an attempt in this direction. The authors provide in a concise style a text at the graduate level summarizing theoretical developments both for short and long memory processes and their applications to statistics. The book also contains some real data applications and mentions some unsolved inference problems for interested researchers in the field./a

Large Sample Inference for Long Memory Processes

Large Sample Inference for Long Memory Processes PDF Author: Liudas Giraitis
Publisher:
ISBN: 9781848162785
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
A discrete-time stationary stochastic process with finite variance is said to have long memory if its autocorrelations tend to zero hyperbolically in the lag, i.e. like a power of the lag, as the lag tends to infinity. The absolute sum of autocorrelations of such processes diverges and their spectral density at the origin is unbounded. This is unlike the so-called weakly dependent processes, where autocorrelations tend to zero exponentially fast and the spectral density is bounded at the origin. In a long memory process, the dependence between the current observation and the one at a distant future is persistent; whereas in the weakly dependent processes, these observations are approximately independent. This fact alone is enough to warn a person about the validity of the classical inference procedures based on the square root of the sample size standardization when data are generated by a long-term memory process.The aim of this volume is to provide a text at the graduate level from which one can learn, in a concise fashion, some basic theory and techniques of proving limit theorems for numerous statistics based on long memory processes. It also provides a guide to researchers about some of the inference problems under long memory.

Large Sample Inference for Long Memory Processes

Large Sample Inference for Long Memory Processes PDF Author: Liudas Giraitis
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 0

Get Book Here

Book Description


Long-Memory Processes

Long-Memory Processes PDF Author: Jan Beran
Publisher: Springer Science & Business Media
ISBN: 3642355129
Category : Mathematics
Languages : en
Pages : 892

Get Book Here

Book Description
Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.

Time Series Analysis

Time Series Analysis PDF Author: Katsuto Tanaka
Publisher: John Wiley & Sons
ISBN: 1119132134
Category : Mathematics
Languages : en
Pages : 1139

Get Book Here

Book Description
Reflects the developments and new directions in the field since the publication of the first successful edition and contains a complete set of problems and solutions This revised and expanded edition reflects the developments and new directions in the field since the publication of the first edition. In particular, sections on nonstationary panel data analysis and a discussion on the distinction between deterministic and stochastic trends have been added. Three new chapters on long-memory discrete-time and continuous-time processes have also been created, whereas some chapters have been merged and some sections deleted. The first eleven chapters of the first edition have been compressed into ten chapters, with a chapter on nonstationary panel added and located under Part I: Analysis of Non-fractional Time Series. Chapters 12 to 14 have been newly written under Part II: Analysis of Fractional Time Series. Chapter 12 discusses the basic theory of long-memory processes by introducing ARFIMA models and the fractional Brownian motion (fBm). Chapter 13 is concerned with the computation of distributions of quadratic functionals of the fBm and its ratio. Next, Chapter 14 introduces the fractional Ornstein–Uhlenbeck process, on which the statistical inference is discussed. Finally, Chapter 15 gives a complete set of solutions to problems posed at the end of most sections. This new edition features: • Sections to discuss nonstationary panel data analysis, the problem of differentiating between deterministic and stochastic trends, and nonstationary processes of local deviations from a unit root • Consideration of the maximum likelihood estimator of the drift parameter, as well as asymptotics as the sampling span increases • Discussions on not only nonstationary but also noninvertible time series from a theoretical viewpoint • New topics such as the computation of limiting local powers of panel unit root tests, the derivation of the fractional unit root distribution, and unit root tests under the fBm error Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Second Edition, is a reference for graduate students in econometrics or time series analysis. Katsuto Tanaka, PhD, is a professor in the Faculty of Economics at Gakushuin University and was previously a professor at Hitotsubashi University. He is a recipient of the Tjalling C. Koopmans Econometric Theory Prize (1996), the Japan Statistical Society Prize (1998), and the Econometric Theory Award (1999). Aside from the first edition of Time Series Analysis (Wiley, 1996), Dr. Tanaka had published five econometrics and statistics books in Japanese.

Macroeconometrics and Time Series Analysis

Macroeconometrics and Time Series Analysis PDF Author: Steven Durlauf
Publisher: Springer
ISBN: 0230280838
Category : Business & Economics
Languages : en
Pages : 417

Get Book Here

Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.

Journal of the Indian Statistical Association

Journal of the Indian Statistical Association PDF Author: Indian Statistical Association
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 220

Get Book Here

Book Description


Selected Proceedings of the Symposium on Inference for Stochastic Processes

Selected Proceedings of the Symposium on Inference for Stochastic Processes PDF Author: Ishwar V. Basawa
Publisher: IMS
ISBN: 9780940600515
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description


Empirical Process Techniques for Dependent Data

Empirical Process Techniques for Dependent Data PDF Author: Herold Dehling
Publisher: Springer Science & Business Media
ISBN: 1461200997
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,

Time Series Analysis with Long Memory in View

Time Series Analysis with Long Memory in View PDF Author: Uwe Hassler
Publisher: John Wiley & Sons
ISBN: 1119470285
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Provides a simple exposition of the basic time series material, and insights into underlying technical aspects and methods of proof Long memory time series are characterized by a strong dependence between distant events. This book introduces readers to the theory and foundations of univariate time series analysis with a focus on long memory and fractional integration, which are embedded into the general framework. It presents the general theory of time series, including some issues that are not treated in other books on time series, such as ergodicity, persistence versus memory, asymptotic properties of the periodogram, and Whittle estimation. Further chapters address the general functional central limit theory, parametric and semiparametric estimation of the long memory parameter, and locally optimal tests. Intuitive and easy to read, Time Series Analysis with Long Memory in View offers chapters that cover: Stationary Processes; Moving Averages and Linear Processes; Frequency Domain Analysis; Differencing and Integration; Fractionally Integrated Processes; Sample Means; Parametric Estimators; Semiparametric Estimators; and Testing. It also discusses further topics. This book: Offers beginning-of-chapter examples as well as end-of-chapter technical arguments and proofs Contains many new results on long memory processes which have not appeared in previous and existing textbooks Takes a basic mathematics (Calculus) approach to the topic of time series analysis with long memory Contains 25 illustrative figures as well as lists of notations and acronyms Time Series Analysis with Long Memory in View is an ideal text for first year PhD students, researchers, and practitioners in statistics, econometrics, and any application area that uses time series over a long period. It would also benefit researchers, undergraduates, and practitioners in those areas who require a rigorous introduction to time series analysis.