$L$ Functions for the Orthogonal Group

$L$ Functions for the Orthogonal Group PDF Author: David Ginzburg
Publisher: American Mathematical Soc.
ISBN: 0821805436
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
In this book, the authors establish global Rankin Selberg integrals which determine the standard [italic capital]L function for the group [italic capitals]GL[subscript italic]r x [italic capital]Gʹ, where [italic capital]Gʹ is an isometry group of a nondegenerate symmetric form. The class of automorphic representations considered here is for any pair [capital Greek]Pi1 [otimes/dyadic/Kronecker/tensor product symbol] [capital Greek]Pi2 where [capital Greek]Pi1 is generic cuspidal for [italic capitals]GL[subscript italic]r([italic capital]A) and [capital Greek]Pi2 is cuspidal for [italic capital]Gʹ([italic capital]A). The construction of these [italic capital]L functions involves the use of certain new "models" of local representations; these models generalize the usual generic models. The authors also computer local unramified factors in a new way using geometric ideas.

$L$ Functions for the Orthogonal Group

$L$ Functions for the Orthogonal Group PDF Author: David Ginzburg
Publisher: American Mathematical Soc.
ISBN: 0821805436
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
In this book, the authors establish global Rankin Selberg integrals which determine the standard [italic capital]L function for the group [italic capitals]GL[subscript italic]r x [italic capital]Gʹ, where [italic capital]Gʹ is an isometry group of a nondegenerate symmetric form. The class of automorphic representations considered here is for any pair [capital Greek]Pi1 [otimes/dyadic/Kronecker/tensor product symbol] [capital Greek]Pi2 where [capital Greek]Pi1 is generic cuspidal for [italic capitals]GL[subscript italic]r([italic capital]A) and [capital Greek]Pi2 is cuspidal for [italic capital]Gʹ([italic capital]A). The construction of these [italic capital]L functions involves the use of certain new "models" of local representations; these models generalize the usual generic models. The authors also computer local unramified factors in a new way using geometric ideas.

Automorphic Forms, Representations and $L$-Functions

Automorphic Forms, Representations and $L$-Functions PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 0821814370
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions

Eisenstein Series and Automorphic $L$-Functions

Eisenstein Series and Automorphic $L$-Functions PDF Author: Freydoon Shahidi
Publisher: American Mathematical Soc.
ISBN: 0821849891
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.

Automorphic Representations, L-Functions and Applications: Progress and Prospects

Automorphic Representations, L-Functions and Applications: Progress and Prospects PDF Author: James W. Cogdell
Publisher: Walter de Gruyter
ISBN: 3110892707
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27–30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin–Selberg L-functions (Bump, Ginzburg–Jiang–Rallis, Lapid–Rallis) the relative trace formula (Jacquet, Mao–Rallis) automorphic representations (Gan–Gurevich, Ginzburg–Rallis–Soudry) representation theory of p-adic groups (Baruch, Kudla–Rallis, Mœglin, Cogdell–Piatetski-Shapiro–Shahidi) p-adic methods (Harris–Li–Skinner, Vigneras), and arithmetic applications (Chinta–Friedberg–Hoffstein). The survey articles by Bump, on the Rankin–Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.

L-Functions and Automorphic Forms

L-Functions and Automorphic Forms PDF Author: Jan Hendrik Bruinier
Publisher: Springer
ISBN: 3319697129
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.

Automorphic Forms and L-Functions for the Group GL(n,R)

Automorphic Forms and L-Functions for the Group GL(n,R) PDF Author: Dorian Goldfeld
Publisher: Cambridge University Press
ISBN: 1139456202
Category : Mathematics
Languages : en
Pages : 65

Get Book Here

Book Description
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.

Advances in the Theory of Automorphic Forms and Their $L$-functions

Advances in the Theory of Automorphic Forms and Their $L$-functions PDF Author: Dihua Jiang
Publisher: American Mathematical Soc.
ISBN: 147041709X
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This volume contains the proceedings of the workshop on “Advances in the Theory of Automorphic Forms and Their L-functions” held in honor of James Cogdell's 60th birthday, held from October 16–25, 2013, at the Erwin Schrödinger Institute (ESI) at the University of Vienna. The workshop and the papers contributed to this volume circle around such topics as the theory of automorphic forms and their L-functions, geometry and number theory, covering some of the recent approaches and advances to these subjects. Specifically, the papers cover aspects of representation theory of p-adic groups, classification of automorphic representations through their Fourier coefficients and their liftings, L-functions for classical groups, special values of L-functions, Howe duality, subconvexity for L-functions, Kloosterman integrals, arithmetic geometry and cohomology of arithmetic groups, and other important problems on L-functions, nodal sets and geometry.

On Certain $L$-Functions

On Certain $L$-Functions PDF Author: James Arthur
Publisher: American Mathematical Soc.
ISBN: 0821852043
Category : Mathematics
Languages : en
Pages : 658

Get Book Here

Book Description
Illuminate various areas of the study of geometric, analytic, and number theoretic aspects of automorphic forms and their $L$-functions, and both local and global theory are addressed. Topics discussed in the articles include Langlands functoriality, the Rankin-Selberg method, the Langlands-Shahidi method, motivic Galois groups, Shimura varieties, orbital integrals, representations of $p$-adic groups, Plancherel formula and its consequences, and the Gross-Prasad conjecture.

Twisted L-Functions and Monodromy

Twisted L-Functions and Monodromy PDF Author: Nicholas M. Katz
Publisher: Princeton University Press
ISBN: 1400824885
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.

Automorphic Representations and L-Functions for the General Linear Group: Volume 2

Automorphic Representations and L-Functions for the General Linear Group: Volume 2 PDF Author: Dorian Goldfeld
Publisher: Cambridge University Press
ISBN: 1139503081
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.