Author: Serge G. Vlăduț
Publisher: CRC Press
ISBN: 9782881247545
Category : Mathematics
Languages : en
Pages : 426
Book Description
During the second half of the 19th century, Leopold Kronecker cherished a dream, his Jugendtraum, that he should see the formulation of a complete theory of complex multiplication. Kronecker's papers devoted to his Jugendtraum constitute the foundations of the arithmetical theory of modular functions. Vladut has studied the dream, and traces the development of elliptic function theory from its genesis to its most recent achievements. Included is a reprint of Kronecker's 1886 paper which presents many of the principal ideas of the arithmetical theory of modular functions. Translated from the Russian. Annotation copyrighted by Book News, Inc., Portland, OR
Kronecker's Jugendtraum and Modular Functions
Elliptic Functions According to Eisenstein and Kronecker
Author: Andre Weil
Publisher: Springer Science & Business Media
ISBN: 9783540650362
Category : Mathematics
Languages : en
Pages : 112
Book Description
Drawn from the Foreword: (...) On the other hand, since much of the material in this volume seems suitable for inclusion in elementary courses, it may not be superfluous to point out that it is almost entirely self-contained. Even the basic facts about trigonometric functions are treated ab initio in Ch. II, according to Eisenstein's method. It would have been both logical and convenient to treat the gamma -function similarly in Ch. VII; for the sake of brevity, this has not been done, and a knowledge of some elementary properties of T(s) has been assumed. One further prerequisite in Part II is Dirichlet's theorem on Fourier series, together with the method of Poisson summation which is only a special case of that theorem; in the case under consideration (essentially no more than the transformation formula for the theta-function) this presupposes the calculation of some classical integrals. (...) As to the final chapter, it concerns applications to number theory (...).
Publisher: Springer Science & Business Media
ISBN: 9783540650362
Category : Mathematics
Languages : en
Pages : 112
Book Description
Drawn from the Foreword: (...) On the other hand, since much of the material in this volume seems suitable for inclusion in elementary courses, it may not be superfluous to point out that it is almost entirely self-contained. Even the basic facts about trigonometric functions are treated ab initio in Ch. II, according to Eisenstein's method. It would have been both logical and convenient to treat the gamma -function similarly in Ch. VII; for the sake of brevity, this has not been done, and a knowledge of some elementary properties of T(s) has been assumed. One further prerequisite in Part II is Dirichlet's theorem on Fourier series, together with the method of Poisson summation which is only a special case of that theorem; in the case under consideration (essentially no more than the transformation formula for the theta-function) this presupposes the calculation of some classical integrals. (...) As to the final chapter, it concerns applications to number theory (...).
Wittgenstein, Finitism, and the Foundations of Mathematics
Author: Mathieu Marion
Publisher: OUP Oxford
ISBN: 0191568325
Category : Philosophy
Languages : en
Pages : 281
Book Description
Mathieu Marion offers a careful, historically informed study of Wittgenstein's philosophy of mathematics. This area of his work has frequently been undervalued by Wittgenstein specialists and by philosophers of mathematics alike; but the surprising fact that he wrote more on this subject than on any other indicates its centrality in his thought. Marion traces the development of Wittgenstein's thinking in the context of the mathematical and philosophical work of the times, to make coherent sense of ideas that have too often been misunderstood because they have been presented in a disjointed and incomplete way. In particular, he illuminates the work of the neglected 'transitional period' between the Tractatus and the Investigations. Marion shows that study of Wittgenstein's writings on mathematics is essential to a proper understanding of his philosophy; and he also demonstrates that it has much to contribute to current debates about the foundations of mathematics.
Publisher: OUP Oxford
ISBN: 0191568325
Category : Philosophy
Languages : en
Pages : 281
Book Description
Mathieu Marion offers a careful, historically informed study of Wittgenstein's philosophy of mathematics. This area of his work has frequently been undervalued by Wittgenstein specialists and by philosophers of mathematics alike; but the surprising fact that he wrote more on this subject than on any other indicates its centrality in his thought. Marion traces the development of Wittgenstein's thinking in the context of the mathematical and philosophical work of the times, to make coherent sense of ideas that have too often been misunderstood because they have been presented in a disjointed and incomplete way. In particular, he illuminates the work of the neglected 'transitional period' between the Tractatus and the Investigations. Marion shows that study of Wittgenstein's writings on mathematics is essential to a proper understanding of his philosophy; and he also demonstrates that it has much to contribute to current debates about the foundations of mathematics.
Québec Studies in the Philosophy of Science
Author: Mathieu Marion
Publisher: Springer Science & Business Media
ISBN: 9400915756
Category : Science
Languages : en
Pages : 476
Book Description
By North-American standards, philosophy is not new in Quebec: the first men tion of philosophy lectures given by a Jesuit in the College de Quebec (founded 1635) dates from 1665, and the oldest logic manuscript dates from 1679. In English-speaking universities such as McGill (founded 1829), philosophy began to be taught later, during the second half of the 19th century. The major influence on English-speaking philosophers was, at least initially, that of Scottish Empiricism. On the other hand, the strong influence of the Catholic Church on French-Canadian society meant that the staff of the facultes of the French-speaking universities consisted, until recently, almost entirely of Thomist philosophers. There was accordingly little or no work in modem Formal Logic and Philosophy of Science and precious few contacts between the philosophical communities. In the late forties, Hugues Leblanc was a young student wanting to learn Formal Logic. He could not find anyone in Quebec to teach him and he went to study at Harvard University under the supervision of W. V. Quine. His best friend Maurice L' Abbe had left, a year earlier, for Princeton to study with Alonzo Church. After receiving his Ph. D from Harvard in 1948, Leblanc started his profes sional career at Bryn Mawr College, where he stayed until 1967. He then went to Temple University, where he taught until his retirement in 1992, serving as Chair of the Department of Philosophy from 1973 until 1979.
Publisher: Springer Science & Business Media
ISBN: 9400915756
Category : Science
Languages : en
Pages : 476
Book Description
By North-American standards, philosophy is not new in Quebec: the first men tion of philosophy lectures given by a Jesuit in the College de Quebec (founded 1635) dates from 1665, and the oldest logic manuscript dates from 1679. In English-speaking universities such as McGill (founded 1829), philosophy began to be taught later, during the second half of the 19th century. The major influence on English-speaking philosophers was, at least initially, that of Scottish Empiricism. On the other hand, the strong influence of the Catholic Church on French-Canadian society meant that the staff of the facultes of the French-speaking universities consisted, until recently, almost entirely of Thomist philosophers. There was accordingly little or no work in modem Formal Logic and Philosophy of Science and precious few contacts between the philosophical communities. In the late forties, Hugues Leblanc was a young student wanting to learn Formal Logic. He could not find anyone in Quebec to teach him and he went to study at Harvard University under the supervision of W. V. Quine. His best friend Maurice L' Abbe had left, a year earlier, for Princeton to study with Alonzo Church. After receiving his Ph. D from Harvard in 1948, Leblanc started his profes sional career at Bryn Mawr College, where he stayed until 1967. He then went to Temple University, where he taught until his retirement in 1992, serving as Chair of the Department of Philosophy from 1973 until 1979.
Advanced Topics in the Arithmetic of Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482
Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Publisher: Springer Science & Business Media
ISBN: 1461208513
Category : Mathematics
Languages : en
Pages : 482
Book Description
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions
Author: Lei Yang
Publisher: World Scientific
ISBN: 9813209496
Category : Mathematics
Languages : en
Pages : 317
Book Description
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
Publisher: World Scientific
ISBN: 9813209496
Category : Mathematics
Languages : en
Pages : 317
Book Description
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
Elliptic Curves
Author: Henry McKean
Publisher: Cambridge University Press
ISBN: 9780521658171
Category : Mathematics
Languages : en
Pages : 300
Book Description
An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.
Publisher: Cambridge University Press
ISBN: 9780521658171
Category : Mathematics
Languages : en
Pages : 300
Book Description
An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.
Number Theory I
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 3662080052
Category : Mathematics
Languages : en
Pages : 311
Book Description
A unified survey of both the status quo and the continuing trends of various branches of number theory. Motivated by elementary problems, the authors present todays most significant results and methods. Topics covered include non-Abelian generalisations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. The book is rounded off with an overview of the major conjectures, most of which are based on analogies between functions and numbers, and on connections with other branches of mathematics such as analysis, representation theory, geometry and algebraic topology.
Publisher: Springer Science & Business Media
ISBN: 3662080052
Category : Mathematics
Languages : en
Pages : 311
Book Description
A unified survey of both the status quo and the continuing trends of various branches of number theory. Motivated by elementary problems, the authors present todays most significant results and methods. Topics covered include non-Abelian generalisations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. The book is rounded off with an overview of the major conjectures, most of which are based on analogies between functions and numbers, and on connections with other branches of mathematics such as analysis, representation theory, geometry and algebraic topology.
Levels of Infinity
Author: Hermann Weyl
Publisher: Courier Corporation
ISBN: 0486266931
Category : Mathematics
Languages : en
Pages : 258
Book Description
Original anthology features less-technical essays discussing logic, topology, abstract algebra, relativity theory, and the works of David Hilbert. Most have been long unavailable or previously unpublished in book form. 2012 edition.
Publisher: Courier Corporation
ISBN: 0486266931
Category : Mathematics
Languages : en
Pages : 258
Book Description
Original anthology features less-technical essays discussing logic, topology, abstract algebra, relativity theory, and the works of David Hilbert. Most have been long unavailable or previously unpublished in book form. 2012 edition.
Algebraic Geometry Codes: Advanced Chapters
Author: Michael Tsfasman
Publisher: American Mathematical Soc.
ISBN: 1470448653
Category : Computers
Languages : en
Pages : 466
Book Description
Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.
Publisher: American Mathematical Soc.
ISBN: 1470448653
Category : Computers
Languages : en
Pages : 466
Book Description
Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.