Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook PDF Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378

Get Book Here

Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook PDF Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378

Get Book Here

Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining PDF Author: O. Maimon
Publisher: Springer Science & Business Media
ISBN: 9780792366478
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225

Get Book Here

Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Data Mining

Data Mining PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601

Get Book Here

Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Data Mining Methods for Knowledge Discovery

Data Mining Methods for Knowledge Discovery PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508

Get Book Here

Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Magnetic Bubble Technology

Magnetic Bubble Technology PDF Author: A. H. Eschenfelder
Publisher: Springer Science & Business Media
ISBN: 3642965490
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
Magnetic bubbles are of interest to engineers because their properties can be used for important practical electronic devices and they are of interest to physicists because their properties are manifestations of intriguing physical principles. At the same time, the fabrication of useful configurations challenges the materials scientists and engineers. A technology of magnetic bubbles has developed to the point where commercial products are being marketed. In addition, new discovery and development are driving this technology toward substantially lower costs and presumably broader application. For all of these reasons there is a need to educate newcomers to this field in universities and in industry. The purpose of this book is to provide a text for a one-semester course that can be taught under headings of Solid State Physics, Materials Science, Computer Technology or Integrated Electronics. It is expected that the student of anyone of these disciplines will be interested in each of the chapters of this book to some degree, but may concentrate on some more than others, depending on the discipline. At the end of each chapter there is a brief summary which will serve as a reminder of the contents of the chapter but can also be read ahead of time to determine the depth of your interest in the chapter.

Knowledge Discovery from Data Streams

Knowledge Discovery from Data Streams PDF Author: Joao Gama
Publisher: CRC Press
ISBN: 1439826129
Category : Business & Economics
Languages : en
Pages : 256

Get Book Here

Book Description
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Knowledge Discovery in the Social Sciences

Knowledge Discovery in the Social Sciences PDF Author: Xiaoling Shu
Publisher: University of California Press
ISBN: 0520339991
Category : Social Science
Languages : en
Pages : 263

Get Book Here

Book Description
Knowledge Discovery in the Social Sciences helps readers find valid, meaningful, and useful information. It is written for researchers and data analysts as well as students who have no prior experience in statistics or computer science. Suitable for a variety of classes—including upper-division courses for undergraduates, introductory courses for graduate students, and courses in data management and advanced statistical methods—the book guides readers in the application of data mining techniques and illustrates the significance of newly discovered knowledge. Readers will learn to: • appreciate the role of data mining in scientific research • develop an understanding of fundamental concepts of data mining and knowledge discovery • use software to carry out data mining tasks • select and assess appropriate models to ensure findings are valid and meaningful • develop basic skills in data preparation, data mining, model selection, and validation • apply concepts with end-of-chapter exercises and review summaries

Knowledge Discovery and Data Mining: Challenges and Realities

Knowledge Discovery and Data Mining: Challenges and Realities PDF Author: Zhu, Xingquan
Publisher: IGI Global
ISBN: 1599042541
Category : Computers
Languages : en
Pages : 290

Get Book Here

Book Description
"This book provides a focal point for research and real-world data mining practitioners that advance knowledge discovery from low-quality data; it presents in-depth experiences and methodologies, providing theoretical and empirical guidance to users who have suffered from underlying low-quality data. Contributions also focus on interdisciplinary collaborations among data quality, data processing, data mining, data privacy, and data sharing"--Provided by publisher.